Optimal maximal encoding different from Huffman encoding

Dongyang Long, W. Jia
{"title":"Optimal maximal encoding different from Huffman encoding","authors":"Dongyang Long, W. Jia","doi":"10.1109/ITCC.2001.918845","DOIUrl":null,"url":null,"abstract":"Novel maximal encoding, encoding, and maximal prefix encoding different from Huffman encoding are introduced. It is proven that for finite source alphabets all Huffman codes are optimal maximal codes, codes, and maximal prefix codes. Conversely, the above three types optimal codes need not to be the Huffman codes. Completely similar to Huffman codes, we prove that for every random variable with a countably infinite set of outcomes and with finite entropy there exists an optimal maximal code (code, maximal prefix code) which can be constructed from optimal maximal codes (codes, maximal prefix codes) for truncated versions of the random variable, and furthermore, that the average code word lengths of any sequence of optimal maximal codes (codes, maximal prefix codes) for the truncated versions converge to that of the optimal maximal code (cone, maximal prefix code).","PeriodicalId":318295,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2001.918845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Novel maximal encoding, encoding, and maximal prefix encoding different from Huffman encoding are introduced. It is proven that for finite source alphabets all Huffman codes are optimal maximal codes, codes, and maximal prefix codes. Conversely, the above three types optimal codes need not to be the Huffman codes. Completely similar to Huffman codes, we prove that for every random variable with a countably infinite set of outcomes and with finite entropy there exists an optimal maximal code (code, maximal prefix code) which can be constructed from optimal maximal codes (codes, maximal prefix codes) for truncated versions of the random variable, and furthermore, that the average code word lengths of any sequence of optimal maximal codes (codes, maximal prefix codes) for the truncated versions converge to that of the optimal maximal code (cone, maximal prefix code).
最优最大编码不同于霍夫曼编码
介绍了不同于霍夫曼编码的新型最大编码、最大前缀编码和最大前缀编码。证明了对于有限源字母,所有的霍夫曼码都是最优极大码、最优码和最优前缀码。反之,上述三种最优码不一定是霍夫曼码。与Huffman码完全相似,我们证明了对于每一个具有可数无限结果集和有限熵的随机变量,存在一个最优极大码(码,最大前缀码),该码可以由该随机变量的截断版本的最优极大码(码,最大前缀码)构造而成,并且证明了任意最优极大码(码,码)序列的平均码字长度截断版本的最大前缀码)收敛于最优最大码(锥,最大前缀码)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信