Image Semantic Segmentation Based on Dilated Convolution and Multi-Layer Feature Fusion

J. Liu, Zhongliang Wu, Yang Hong, Guoyun Zhong, Meifeng Liu
{"title":"Image Semantic Segmentation Based on Dilated Convolution and Multi-Layer Feature Fusion","authors":"J. Liu, Zhongliang Wu, Yang Hong, Guoyun Zhong, Meifeng Liu","doi":"10.1109/AIID51893.2021.9456560","DOIUrl":null,"url":null,"abstract":"At present, most of the research methods of image semantic segmentation are based on Fully Convolutional Networks (FCN). However, FCN will cause the loss of image feature information when performing image semantic segmentation, and the details of the output image will not be processed well. Therefore, we propose to take the ResNet network as the encoder basic network. Using dilated convolution to extract context information, and designing a multi-scale feature fusion method in the decoder to make full use of features from each level to enrich representative ability of feature points, so that it can classify image pixels well. Extensive experiments demonstrate that our method shows superior performance over other methods on the PASCAL VOC2012 [10]validation dataset.","PeriodicalId":412698,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIID51893.2021.9456560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At present, most of the research methods of image semantic segmentation are based on Fully Convolutional Networks (FCN). However, FCN will cause the loss of image feature information when performing image semantic segmentation, and the details of the output image will not be processed well. Therefore, we propose to take the ResNet network as the encoder basic network. Using dilated convolution to extract context information, and designing a multi-scale feature fusion method in the decoder to make full use of features from each level to enrich representative ability of feature points, so that it can classify image pixels well. Extensive experiments demonstrate that our method shows superior performance over other methods on the PASCAL VOC2012 [10]validation dataset.
基于扩展卷积和多层特征融合的图像语义分割
目前,大多数图像语义分割的研究方法都是基于全卷积网络(Fully Convolutional Networks, FCN)。但是,FCN在进行图像语义分割时,会造成图像特征信息的丢失,输出图像的细节得不到很好的处理。因此,我们建议采用ResNet网络作为编码器的基础网络。利用展开卷积提取上下文信息,并在解码器中设计了多尺度特征融合方法,充分利用各层次的特征,丰富特征点的代表能力,使解码器能够很好地对图像像素进行分类。大量的实验表明,我们的方法在PASCAL VOC2012[10]验证数据集上表现出优于其他方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信