Neural network for image-to-image control of optical tweezers

A. Decker, R. Anderson, K. E. Weiland, S. Wrbanek
{"title":"Neural network for image-to-image control of optical tweezers","authors":"A. Decker, R. Anderson, K. E. Weiland, S. Wrbanek","doi":"10.1117/12.559564","DOIUrl":null,"url":null,"abstract":"A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480X480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100X100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480X480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.559564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480X480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100X100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480X480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.
光镊图像对图像控制的神经网络
讨论了一种利用神经网络控制光镊的方法。神经网络输出与缩放和平铺相结合,为空间光调制器(SLM)生成480x480像素的控制模式。SLM可以以各种方式与显微镜组合,以创建具有可控轮廓的可移动镊子陷阱。神经网络旨在对碳和碳化硅纳米管传感器发出的散射光做出反应。纳米管传感器被夹在陷阱中进行操作和校准。缩放和平铺允许分阶段应用神经网络软件的100x100像素最大分辨率,以利用SLM的全部480x480像素分辨率。其中一个阶段旨在制造灵敏的零探测器,用于检测来自纳米管传感器的散射光的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信