Estimasi Parameter Model Moving Average Orde 1 Menggunakan Metode Momen dan Maximum Likelihood

Nirwana Nirwana, Mustika Hadijati, Nurul Fitriyani
{"title":"Estimasi Parameter Model Moving Average Orde 1 Menggunakan Metode Momen dan Maximum Likelihood","authors":"Nirwana Nirwana, Mustika Hadijati, Nurul Fitriyani","doi":"10.29303/EMJ.V1I1.8","DOIUrl":null,"url":null,"abstract":"Autoregressive Integrated Moving Average is a model that commonly used to model time series data. One model that can be modeled is Moving Average (MA). In this study, the estimation of parameters was performed to produce the model estimator parameter, where if the order component of the MA model is known, then the methods that can be used are the Ordinary Least Square (OLS) method, Moment method, and Maximum Likelihood method. But in fact, there are often assumption deviations when using the OLS method, one of which occurs heteroscedasticity (variant is not constant) which is produce a poor estimator. This study used both Moment and Maximum Likelihood method in estimating the parameter of the 1 st Moving Average model, denoted by MA (1). The result showed that MA (1) parameter model using Moment method gave better result than Maximum Likelihood method. This can be seen from the value of Schwartz Bayesian Criterion (SBC) of both Moment and Maximum Likelihood method parameter estimator with magnified amount of data and various parameters values generated.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/EMJ.V1I1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autoregressive Integrated Moving Average is a model that commonly used to model time series data. One model that can be modeled is Moving Average (MA). In this study, the estimation of parameters was performed to produce the model estimator parameter, where if the order component of the MA model is known, then the methods that can be used are the Ordinary Least Square (OLS) method, Moment method, and Maximum Likelihood method. But in fact, there are often assumption deviations when using the OLS method, one of which occurs heteroscedasticity (variant is not constant) which is produce a poor estimator. This study used both Moment and Maximum Likelihood method in estimating the parameter of the 1 st Moving Average model, denoted by MA (1). The result showed that MA (1) parameter model using Moment method gave better result than Maximum Likelihood method. This can be seen from the value of Schwartz Bayesian Criterion (SBC) of both Moment and Maximum Likelihood method parameter estimator with magnified amount of data and various parameters values generated.
自回归综合移动平均线是一种常用的时间序列数据建模模型。一个可以建模的模型是移动平均线(MA)。在本研究中,对参数进行估计以产生模型估计器参数,其中如果MA模型的阶分量已知,则可以使用的方法有普通最小二乘(OLS)法、矩量法和极大似然法。但实际上,在使用OLS方法时,往往会出现假设偏差,其中一个是异方差(变量不是恒定的),从而产生较差的估计量。本研究同时使用矩法和极大似然法对第一个移动平均模型的参数进行估计,用MA(1)表示。结果表明,使用矩法的MA(1)参数模型的结果优于极大似然法。这可以从矩量法和极大似然法参数估计器的Schwartz Bayesian Criterion (SBC)的值中看出,它们的数据量都被放大了,产生的参数值也不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信