Clustering Spatial Data with Obstacles Constraints by PSO

Xueping Zhang, Fen Qin, Jiayao Wang, Yongheng Fu, Jinghui Chen
{"title":"Clustering Spatial Data with Obstacles Constraints by PSO","authors":"Xueping Zhang, Fen Qin, Jiayao Wang, Yongheng Fu, Jinghui Chen","doi":"10.1109/FSKD.2007.219","DOIUrl":null,"url":null,"abstract":"This paper proposes a particle swarm optimization (PSO) method for solving Spatial Clustering with Obstacles Constraints (SCOC). In the process of doing so, we first use PSO to get obstructed distance, and then we developed the PSO K-Medoids SCOC (PKSCOC) to cluster spatial data with obstacles constraints. The experimental results show that PKSCOC performs better than Improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than Genetic K-Medoids SCOC (GKSCOC).","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a particle swarm optimization (PSO) method for solving Spatial Clustering with Obstacles Constraints (SCOC). In the process of doing so, we first use PSO to get obstructed distance, and then we developed the PSO K-Medoids SCOC (PKSCOC) to cluster spatial data with obstacles constraints. The experimental results show that PKSCOC performs better than Improved K-Medoids SCOC (IKSCOC) in terms of quantization error and has higher constringency speed than Genetic K-Medoids SCOC (GKSCOC).
基于粒子群算法的障碍物约束空间数据聚类
提出了一种基于粒子群算法的障碍物约束空间聚类问题求解方法。在此过程中,我们首先使用PSO来获取障碍物距离,然后我们开发了PSO K-Medoids SCOC (PKSCOC)来对具有障碍物约束的空间数据进行聚类。实验结果表明,PKSCOC在量化误差方面优于改进K-Medoids SCOC (IKSCOC),在收敛速度方面优于遗传K-Medoids SCOC (GKSCOC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信