{"title":"An efficient scattered data approximation using multilevel B-splines based on quasi-interpolants","authors":"Byung-Gook Lee, Joon-Jae Lee, Jaechil Yoo","doi":"10.1109/3DIM.2005.18","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient approximation algorithm using multilevel B-splines based on quasi-interpolants. Multilevel technique uses a coarse to fine hierarchy to generate a sequence of bicubic B-spline functions whose sum approaches the desired interpolation function. To compute a set of control points, quasi-interpolants gives a procedure for deriving local spline approximation methods where a B-spline coefficient only depends on data points taken from the neighborhood of the support corresponding the B-spline. Experimental results show that the smooth surface reconstruction with high accuracy can be obtained from a selected set of scattered or dense irregular samples.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we propose an efficient approximation algorithm using multilevel B-splines based on quasi-interpolants. Multilevel technique uses a coarse to fine hierarchy to generate a sequence of bicubic B-spline functions whose sum approaches the desired interpolation function. To compute a set of control points, quasi-interpolants gives a procedure for deriving local spline approximation methods where a B-spline coefficient only depends on data points taken from the neighborhood of the support corresponding the B-spline. Experimental results show that the smooth surface reconstruction with high accuracy can be obtained from a selected set of scattered or dense irregular samples.