Quick Torsion Torque Control Based on Model Error Compensator and Disturbance Observer with Torsion Torque Sensor

Yusuke Kawai, Sora Nagao, Y. Yokokura, K. Ohishi, T. Miyazaki
{"title":"Quick Torsion Torque Control Based on Model Error Compensator and Disturbance Observer with Torsion Torque Sensor","authors":"Yusuke Kawai, Sora Nagao, Y. Yokokura, K. Ohishi, T. Miyazaki","doi":"10.1109/IEEECONF49454.2021.9382617","DOIUrl":null,"url":null,"abstract":"Conventionally, I-P-I-P torsion torque control has been proposed for realizing the load-side acceleration control that is a robust motion control for the flexible joint manipulator. However, conventional torsion torque control is designed as a 4th-order delay system and it is difficult to improve the control bandwidth. For this, reducing control-system-order is required. This paper proposes a quick torsion torque control based on a force and position sensors integrated disturbance observer (FPIDO) and a model error compensator (MEC) for improving the performance of human interaction in the flexible joint manipulator. The proposed approach that combines the FPIDO and MEC is capable of control the design of the torsion torque control at the 2nd-order delay system. The proposed approach is verified through numerical simulation and experimental results.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventionally, I-P-I-P torsion torque control has been proposed for realizing the load-side acceleration control that is a robust motion control for the flexible joint manipulator. However, conventional torsion torque control is designed as a 4th-order delay system and it is difficult to improve the control bandwidth. For this, reducing control-system-order is required. This paper proposes a quick torsion torque control based on a force and position sensors integrated disturbance observer (FPIDO) and a model error compensator (MEC) for improving the performance of human interaction in the flexible joint manipulator. The proposed approach that combines the FPIDO and MEC is capable of control the design of the torsion torque control at the 2nd-order delay system. The proposed approach is verified through numerical simulation and experimental results.
基于模型误差补偿和扭矩传感器扰动观测器的扭矩快速控制
传统的I-P-I-P扭转力矩控制是实现柔性关节机械臂负载侧加速度控制的一种鲁棒运动控制方法。然而,传统的扭矩控制被设计成一个四阶延迟系统,难以提高控制带宽。为此,需要减少控制系统的顺序。为了提高柔性关节机械臂的人机交互性能,提出了一种基于力与位置传感器集成干扰观测器(FPIDO)和模型误差补偿器(MEC)的快速扭矩控制方法。该方法将FPIDO和MEC相结合,能够控制二阶延迟系统的扭转力矩控制设计。数值模拟和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信