Pattern recognition of gases of petroleum based on RBF model

Maria Silva Santos Barbosa, Teresa B Ludermir, Marizete Silva Santos, F. L. D. Santos, José Edison Gomes de Souza, C. P. D. Melo
{"title":"Pattern recognition of gases of petroleum based on RBF model","authors":"Maria Silva Santos Barbosa, Teresa B Ludermir, Marizete Silva Santos, F. L. D. Santos, José Edison Gomes de Souza, C. P. D. Melo","doi":"10.1109/SBRN.2002.1181445","DOIUrl":null,"url":null,"abstract":"In the case of aerial accident spreading out dangerous gases into the atmosphere, an instrument called electronic nose can warn about the beginning of petroleum derived leaks. In this paper we present the architecture of the neural network for pattern recognition of gases of petroleum based on an RBF model. With this model we analyzed the pattern recognition of five gases: ethane, methane, propane, butane and carbon monoxide, separated in three classes of problems.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the case of aerial accident spreading out dangerous gases into the atmosphere, an instrument called electronic nose can warn about the beginning of petroleum derived leaks. In this paper we present the architecture of the neural network for pattern recognition of gases of petroleum based on an RBF model. With this model we analyzed the pattern recognition of five gases: ethane, methane, propane, butane and carbon monoxide, separated in three classes of problems.
基于RBF模型的石油气体模式识别
在航空事故向大气中扩散危险气体的情况下,一种叫做电子鼻的仪器可以对石油泄漏的开始发出警告。本文提出了一种基于RBF模型的石油气体模式识别神经网络的结构。利用这个模型,我们分析了五种气体的模式识别:乙烷、甲烷、丙烷、丁烷和一氧化碳,它们被分为三类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信