Interactive Exploration of Hierarchical Density Clusters in Gene Expression Data

Tran Van Long, L. Linsen
{"title":"Interactive Exploration of Hierarchical Density Clusters in Gene Expression Data","authors":"Tran Van Long, L. Linsen","doi":"10.1109/KSE.2010.22","DOIUrl":null,"url":null,"abstract":"Clustering gene expression data is an important task in bioinformatics research and biomedical applications. In this paper, we present an effective clustering algorithm for gene expression data. The clustering algorithm is based on the analysis of data's density distribution. We propose an intersecting partition of gene expression data into the supports of data points. Density clusters are maximally connected regions at certain density levels, and thus, can be organized in a hierarchical structure. For interactive visual exploration, we use a 2D radial layout of the hierarchical density cluster tree with linked as well as embedded views of parallel coordinates and heat maps. Our system supports the understanding of the distribution of density clusters and the patterns of the density clusters. Experimental results for common gene expression data sets shows the effectiveness and scalability of the algorithm.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"35 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering gene expression data is an important task in bioinformatics research and biomedical applications. In this paper, we present an effective clustering algorithm for gene expression data. The clustering algorithm is based on the analysis of data's density distribution. We propose an intersecting partition of gene expression data into the supports of data points. Density clusters are maximally connected regions at certain density levels, and thus, can be organized in a hierarchical structure. For interactive visual exploration, we use a 2D radial layout of the hierarchical density cluster tree with linked as well as embedded views of parallel coordinates and heat maps. Our system supports the understanding of the distribution of density clusters and the patterns of the density clusters. Experimental results for common gene expression data sets shows the effectiveness and scalability of the algorithm.
基因表达数据中层次密度簇的交互探索
基因表达数据聚类是生物信息学研究和生物医学应用中的一项重要任务。本文提出了一种有效的基因表达数据聚类算法。聚类算法是基于对数据密度分布的分析。我们提出了一个交叉分割的基因表达数据到数据点的支持。密度集群是在一定密度水平上最大限度地连接区域,因此可以组织成层次结构。为了进行交互式视觉探索,我们使用二维径向布局的分层密度聚类树,其中包含平行坐标和热图的链接视图和嵌入视图。我们的系统支持对密度集群分布和密度集群模式的理解。对常见基因表达数据集的实验结果表明了该算法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信