Training set generation using fuzzy logic and dynamic chromosome based Genetic Algorithms for plant identifiers

N. Nahapetian, M. Analoui, M. Jahed-Motlagh
{"title":"Training set generation using fuzzy logic and dynamic chromosome based Genetic Algorithms for plant identifiers","authors":"N. Nahapetian, M. Analoui, M. Jahed-Motlagh","doi":"10.1109/CICA.2009.4982782","DOIUrl":null,"url":null,"abstract":"Training set is one of the main critical sections in Neural Network, generating of it with prior knowledge can be extremely efficient. In this paper we have tried to explore the potential of using previously generated training set (not randomly) for the training of Dynamic Neural Network. The neural network was used as the core of identifier which tries to identify the internal behavior of structure-unknown non-linear time variant dynamic system.","PeriodicalId":383751,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2009.4982782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Training set is one of the main critical sections in Neural Network, generating of it with prior knowledge can be extremely efficient. In this paper we have tried to explore the potential of using previously generated training set (not randomly) for the training of Dynamic Neural Network. The neural network was used as the core of identifier which tries to identify the internal behavior of structure-unknown non-linear time variant dynamic system.
基于模糊逻辑和动态染色体遗传算法的植物标识符训练集生成
训练集是神经网络的关键部分之一,利用先验知识生成训练集是非常高效的。在本文中,我们试图探索使用先前生成的训练集(非随机)来训练动态神经网络的潜力。采用神经网络作为辨识器的核心,对结构未知的非线性时变动态系统进行内部行为辨识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信