Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing

U. Chand, M. Aly, Manohar Lal, Chen Chun-Kuei, S. Hooda, Shih-Hao Tsai, Zihang Fang, H. Veluri, A. Thean
{"title":"Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing","authors":"U. Chand, M. Aly, Manohar Lal, Chen Chun-Kuei, S. Hooda, Shih-Hao Tsai, Zihang Fang, H. Veluri, A. Thean","doi":"10.1109/vlsitechnologyandcir46769.2022.9830250","DOIUrl":null,"url":null,"abstract":"For the first time, we investigated ultra-short-channel ZnO thin-film FETs with Lch = 8 nm with extremely scaled channel thickness tZnO of 3nm, the device exhibits ultra-low sub-pA/µm off leakage (1.2 pA/µm), high electron mobility (µeff = 84 cm2/V•s) with record peak transconductance (Gm,) of 254 μS/μm at VDS = 1 V wrt. reported oxide-based transistors, to date, leading to high on-state current (ION) of 561 μA/μm. We demonstrated the integration of a ZnO access transistor with Al2O3 RRAM to enable a 1T-1R memory cell, suitable for BEOL-embedded memory. We evaluate the system-level benefits of a hardware accelerator for deep learning to employ FET-RRAM as working memory—up to 10X energy-efficiency benefits can be achieved over current baseline configurations.","PeriodicalId":332454,"journal":{"name":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For the first time, we investigated ultra-short-channel ZnO thin-film FETs with Lch = 8 nm with extremely scaled channel thickness tZnO of 3nm, the device exhibits ultra-low sub-pA/µm off leakage (1.2 pA/µm), high electron mobility (µeff = 84 cm2/V•s) with record peak transconductance (Gm,) of 254 μS/μm at VDS = 1 V wrt. reported oxide-based transistors, to date, leading to high on-state current (ION) of 561 μA/μm. We demonstrated the integration of a ZnO access transistor with Al2O3 RRAM to enable a 1T-1R memory cell, suitable for BEOL-embedded memory. We evaluate the system-level benefits of a hardware accelerator for deep learning to employ FET-RRAM as working memory—up to 10X energy-efficiency benefits can be achieved over current baseline configurations.
亚10nm超薄ZnO沟道场效应管,在VDS 1V下具有创纪录的561 μ A/ μ m离子,高μ -84 cm2/V-s和1t - 1rram存储单元,证明了节能深度学习计算的存储意义
我们首次研究了Lch = 8 nm、极窄通道厚度tZnO为3nm的超短通道ZnO薄膜fet,该器件在VDS = 1 V wrt时具有超低的亚pA/µm漏失(1.2 pA/µm)、高电子迁移率(µeff = 84 cm2/V•s)和创纪录的254 μS/μm跨导峰(Gm)。迄今为止报道的基于氧化物的晶体管,其导通电流(ION)高达561 μA/μm。我们展示了ZnO接入晶体管与Al2O3 RRAM的集成,以实现适用于beol嵌入式存储器的1T-1R存储单元。我们评估了采用FET-RRAM作为工作存储器的深度学习硬件加速器的系统级优势-与目前的基线配置相比,可以实现高达10倍的能效优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信