Perturbation Expansion to the Solution of Differential Equations

J. Mohapatra
{"title":"Perturbation Expansion to the Solution of Differential Equations","authors":"J. Mohapatra","doi":"10.5772/intechopen.94173","DOIUrl":null,"url":null,"abstract":"The main purpose of this chapter is to describe the application of perturbation expansion techniques to the solution of differential equations. Approximate expressions are generated in the form of asymptotic series. These may not and often do not converge but in a truncated form of only two or three terms, provide a useful approximation to the original problem. These analytical techniques provide an alternative to the direct computer solution. Before attempting to solve these problems numerically, one should have an awareness of the perturbation approach.","PeriodicalId":381248,"journal":{"name":"A Collection of Papers on Chaos Theory and Its Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Collection of Papers on Chaos Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this chapter is to describe the application of perturbation expansion techniques to the solution of differential equations. Approximate expressions are generated in the form of asymptotic series. These may not and often do not converge but in a truncated form of only two or three terms, provide a useful approximation to the original problem. These analytical techniques provide an alternative to the direct computer solution. Before attempting to solve these problems numerically, one should have an awareness of the perturbation approach.
微分方程解的摄动展开
本章的主要目的是描述微扰展开技术在微分方程解中的应用。近似表达式以渐近级数的形式生成。这些可能不收敛,也常常不收敛,但在只有两项或三项的截断形式中,提供了对原始问题的有用近似。这些分析技术提供了直接计算机解决方案的另一种选择。在尝试用数值方法解决这些问题之前,我们应该了解摄动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信