Finding Crucial Subproblems to Focus Global Search

Susan L. Epstein, R. Wallace
{"title":"Finding Crucial Subproblems to Focus Global Search","authors":"Susan L. Epstein, R. Wallace","doi":"10.1109/ICTAI.2006.60","DOIUrl":null,"url":null,"abstract":"Traditional global search heuristics to solve constraint satisfaction problems focus on properties of an individual variable that mandate early search attention. If however, one could predict crucial subproblems (the portions of a constraint satisfaction problem likely to cause each other particular difficulty) in advance, search could address them first. This paper postulates several types of crucial subproblems, and shows how local search can be harnessed to identify them before global search for a solution. A variety of heuristics and metrics are then used to guide traditional constraint heuristics with those crucial subproblems. On certain classes of structured problems, such search outperforms traditional heuristics by at least an order of magnitude in both time and space","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Traditional global search heuristics to solve constraint satisfaction problems focus on properties of an individual variable that mandate early search attention. If however, one could predict crucial subproblems (the portions of a constraint satisfaction problem likely to cause each other particular difficulty) in advance, search could address them first. This paper postulates several types of crucial subproblems, and shows how local search can be harnessed to identify them before global search for a solution. A variety of heuristics and metrics are then used to guide traditional constraint heuristics with those crucial subproblems. On certain classes of structured problems, such search outperforms traditional heuristics by at least an order of magnitude in both time and space
寻找焦点全局搜索的关键子问题
解决约束满足问题的传统全局搜索启发式方法侧重于要求早期搜索注意的单个变量的属性。但是,如果可以提前预测关键的子问题(约束满足问题的部分可能会导致彼此的特定困难),则搜索可以首先解决它们。本文假设了几种关键子问题的类型,并展示了如何在全局搜索解决方案之前利用局部搜索来识别它们。然后使用各种启发式和度量来指导那些关键子问题的传统约束启发式。在某些类型的结构化问题上,这种搜索在时间和空间上至少比传统的启发式算法要好一个数量级
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信