Image Language Terminal Symbols from Feature Analysis

Przemyslaw Glomb
{"title":"Image Language Terminal Symbols from Feature Analysis","authors":"Przemyslaw Glomb","doi":"10.1109/IST.2007.379599","DOIUrl":null,"url":null,"abstract":"This article presents an approach to generate the image description in the form of sequence of symbols, suitable for further processing with parsing and grammar inference tools. The algorithm assumes presence of a training set of example images. From this set a number of image patches is selected. Using sparse kernel feature analysis, the similarity functions for each symbol are prepared. These functions are used to get terminal symbol locations within analyzed image. A list of symbol locations is then reduced into a tree. Application experiments performed with a database of car images show the potential of the method to represent the structure of object images.","PeriodicalId":329519,"journal":{"name":"2007 IEEE International Workshop on Imaging Systems and Techniques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Workshop on Imaging Systems and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2007.379599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents an approach to generate the image description in the form of sequence of symbols, suitable for further processing with parsing and grammar inference tools. The algorithm assumes presence of a training set of example images. From this set a number of image patches is selected. Using sparse kernel feature analysis, the similarity functions for each symbol are prepared. These functions are used to get terminal symbol locations within analyzed image. A list of symbol locations is then reduced into a tree. Application experiments performed with a database of car images show the potential of the method to represent the structure of object images.
图像语言终端符号的特征分析
本文提出了一种以符号序列的形式生成图像描述的方法,该方法适合使用解析和语法推理工具进行进一步处理。该算法假设存在一个示例图像的训练集。从这个集合中选择一些图像补丁。利用稀疏核特征分析,编制了各符号的相似度函数。这些函数用于得到被分析图像中的终端符号位置。然后将符号位置列表简化为树。在汽车图像数据库中进行的应用实验显示了该方法在表示物体图像结构方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信