{"title":"High efficiency digitally linearized GaN based power amplifier for 3G applications","authors":"S. Bensmida, O. Hammi, F. Ghannouchi","doi":"10.1109/RWS.2008.4463518","DOIUrl":null,"url":null,"abstract":"In this paper, a high efficiency GaN based power amplifier is designed using multi-harmonics load pull measurements. A load matching network that independently controls the load impedance at the fundamental, second and third harmonic frequencies is used for straightforward implementation. The continuously driven single-ended deep class AB biased power amplifier achieves a peak power added efficiency of 68% at saturation. It is found that the designed power amplifier exhibit highly non linear characteristics with 7 dB gain compression at saturation. Digital predistortion based linearizer is used to improve the linearity performance of the power amplifier under a WCDMA excitation (PAPR=9.8 dB). At a 10 dB output power back-off, 21% power added efficiency was measured along with 53 dBc adjacent channel leakage ratio.","PeriodicalId":431471,"journal":{"name":"2008 IEEE Radio and Wireless Symposium","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2008.4463518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, a high efficiency GaN based power amplifier is designed using multi-harmonics load pull measurements. A load matching network that independently controls the load impedance at the fundamental, second and third harmonic frequencies is used for straightforward implementation. The continuously driven single-ended deep class AB biased power amplifier achieves a peak power added efficiency of 68% at saturation. It is found that the designed power amplifier exhibit highly non linear characteristics with 7 dB gain compression at saturation. Digital predistortion based linearizer is used to improve the linearity performance of the power amplifier under a WCDMA excitation (PAPR=9.8 dB). At a 10 dB output power back-off, 21% power added efficiency was measured along with 53 dBc adjacent channel leakage ratio.