Electrocardiogram diagnosis using wavelet-based artificial neural network

K. Chen, Yu-Shu Ni, Jhao-Yi Wang
{"title":"Electrocardiogram diagnosis using wavelet-based artificial neural network","authors":"K. Chen, Yu-Shu Ni, Jhao-Yi Wang","doi":"10.1109/GCCE.2016.7800547","DOIUrl":null,"url":null,"abstract":"Electrocardiography (ECG) is a widely used noninvasive clinical tool for the diagnosis of cardiovascular disease. However, the accuracy of ECG analysis significantly affect the diagnostic error rate of cardiovascular diseases. Therefore, in recent year, many Neural Network (NN)-based approaches were proposed to automatically analyze the ECG signal. However, these methods suffer from long computing time, which is inappropriate for the mobile real-time application. To solve this problem, we propose a Wavelet-based Artificial Neural Network (W-ANN) diagnosis flow in this paper. Based on the wavelet transform, the W-ANN can provide not only cleaner ECG input signal but lower computing time. The experimental results show that the proposed method can reduce 49% computing time with only 11.7% ECG diagnostic accuracy loss by involving the data from MIT-BIH arrhythmia database and real ECG signal measurement.","PeriodicalId":416104,"journal":{"name":"2016 IEEE 5th Global Conference on Consumer Electronics","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 5th Global Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2016.7800547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Electrocardiography (ECG) is a widely used noninvasive clinical tool for the diagnosis of cardiovascular disease. However, the accuracy of ECG analysis significantly affect the diagnostic error rate of cardiovascular diseases. Therefore, in recent year, many Neural Network (NN)-based approaches were proposed to automatically analyze the ECG signal. However, these methods suffer from long computing time, which is inappropriate for the mobile real-time application. To solve this problem, we propose a Wavelet-based Artificial Neural Network (W-ANN) diagnosis flow in this paper. Based on the wavelet transform, the W-ANN can provide not only cleaner ECG input signal but lower computing time. The experimental results show that the proposed method can reduce 49% computing time with only 11.7% ECG diagnostic accuracy loss by involving the data from MIT-BIH arrhythmia database and real ECG signal measurement.
基于小波的人工神经网络的心电图诊断
心电图(Electrocardiography, ECG)是一种广泛应用于心血管疾病诊断的无创临床工具。然而,心电图分析的准确性显著影响心血管疾病的诊断错误率。因此,近年来提出了许多基于神经网络的心电信号自动分析方法。但是,这些方法的计算时间长,不适合移动实时应用。为了解决这一问题,本文提出了一种基于小波的人工神经网络(W-ANN)诊断流程。基于小波变换的W-ANN不仅可以提供更清晰的心电输入信号,而且可以缩短计算时间。实验结果表明,该方法结合MIT-BIH心律失常数据库数据和实际心电信号测量数据,计算时间减少49%,诊断准确率损失11.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信