Solving quadratic equations by factorising

J. Bird
{"title":"Solving quadratic equations by factorising","authors":"J. Bird","doi":"10.1201/9780429294402-16","DOIUrl":null,"url":null,"abstract":"In fact, there are an infinite number of equations that have these same roots. The intercept form of a quadratic equation is y = a (x p) (x q) . In the equation, p and q represent the x-intercepts of the graph corresponding to the equation. The intercept form of the equation shown in the graph is y = 2 (x 1) (x + 2) . The x-intercepts of the graph are 1 and -2. The standard form of the equation is y = 2 x 2 + 2x 4.","PeriodicalId":154277,"journal":{"name":"Mathematics Pocket Book for Engineers and Scientists","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Pocket Book for Engineers and Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429294402-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In fact, there are an infinite number of equations that have these same roots. The intercept form of a quadratic equation is y = a (x p) (x q) . In the equation, p and q represent the x-intercepts of the graph corresponding to the equation. The intercept form of the equation shown in the graph is y = 2 (x 1) (x + 2) . The x-intercepts of the graph are 1 and -2. The standard form of the equation is y = 2 x 2 + 2x 4.
通过分解来解二次方程
事实上,有无数方程都有相同的根。二次方程的截距形式是y = a (xp) (xq)方程中,p和q表示与方程对应的图形的x轴截距。图中所示方程的截距形式是y = 2 (x1) (x + 2)。图像的x轴截距是1和-2。方程的标准形式是y = 2x2 + 2x2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信