Not All Comments Are Equal: Insights into Comment Moderation from a Topic-Aware Model

Elaine Zosa, Ravi Shekhar, Mladen Karan, Matthew Purver
{"title":"Not All Comments Are Equal: Insights into Comment Moderation from a Topic-Aware Model","authors":"Elaine Zosa, Ravi Shekhar, Mladen Karan, Matthew Purver","doi":"10.26615/978-954-452-072-4_185","DOIUrl":null,"url":null,"abstract":"Moderation of reader comments is a significant problem for online news platforms. Here, we experiment with models for automatic moderation, using a dataset of comments from a popular Croatian newspaper. Our analysis shows that while comments that violate the moderation rules mostly share common linguistic and thematic features, their content varies across the different sections of the newspaper. We therefore make our models topic-aware, incorporating semantic features from a topic model into the classification decision. Our results show that topic information improves the performance of the model, increases its confidence in correct outputs, and helps us understand the model’s outputs.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-072-4_185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Moderation of reader comments is a significant problem for online news platforms. Here, we experiment with models for automatic moderation, using a dataset of comments from a popular Croatian newspaper. Our analysis shows that while comments that violate the moderation rules mostly share common linguistic and thematic features, their content varies across the different sections of the newspaper. We therefore make our models topic-aware, incorporating semantic features from a topic model into the classification decision. Our results show that topic information improves the performance of the model, increases its confidence in correct outputs, and helps us understand the model’s outputs.
并非所有评论都是平等的:基于主题感知模型的评论审核洞察
读者评论的适度管理是网络新闻平台面临的一个重要问题。在这里,我们使用来自克罗地亚一家流行报纸的评论数据集,对自动审核模型进行了实验。我们的分析表明,虽然违反审查规则的评论大多具有共同的语言和主题特征,但它们的内容在报纸的不同部分有所不同。因此,我们使模型具有主题意识,将主题模型的语义特征合并到分类决策中。我们的结果表明,主题信息提高了模型的性能,增加了模型对正确输出的信心,并帮助我们理解模型的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信