Scaling Data Intensive Physics Applications to 10k Cores on Non-dedicated Clusters with Lobster

A. Woodard, M. Wolf, C. Müller, N. Valls, Benjamín Tovar, P. Donnelly, Peter Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, M. Hildreth
{"title":"Scaling Data Intensive Physics Applications to 10k Cores on Non-dedicated Clusters with Lobster","authors":"A. Woodard, M. Wolf, C. Müller, N. Valls, Benjamín Tovar, P. Donnelly, Peter Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, M. Hildreth","doi":"10.1109/CLUSTER.2015.53","DOIUrl":null,"url":null,"abstract":"The high energy physics (HEP) community relies upon a global network of computing and data centers to analyze data produced by multiple experiments at the Large Hadron Collider (LHC). However, this global network does not satisfy all research needs. Ambitious researchers often wish to harness computing resources that are not integrated into the global network, including private clusters, commercial clouds, and other production grids. To enable these use cases, we have constructed Lobster, a system for deploying data intensive high throughput applications on non-dedicated clusters. This requires solving multiple problems related to non-dedicated resources, including work decomposition, software delivery, concurrency management, data access, data merging, and performance troubleshooting. With these techniques, we demonstrate Lobster running effectively on 10k cores, producing throughput at a level comparable with some of the largest dedicated clusters in the LHC infrastructure.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The high energy physics (HEP) community relies upon a global network of computing and data centers to analyze data produced by multiple experiments at the Large Hadron Collider (LHC). However, this global network does not satisfy all research needs. Ambitious researchers often wish to harness computing resources that are not integrated into the global network, including private clusters, commercial clouds, and other production grids. To enable these use cases, we have constructed Lobster, a system for deploying data intensive high throughput applications on non-dedicated clusters. This requires solving multiple problems related to non-dedicated resources, including work decomposition, software delivery, concurrency management, data access, data merging, and performance troubleshooting. With these techniques, we demonstrate Lobster running effectively on 10k cores, producing throughput at a level comparable with some of the largest dedicated clusters in the LHC infrastructure.
在非专用集群上使用Lobster将数据密集型物理应用扩展到10k核
高能物理(HEP)社区依靠全球计算和数据中心网络来分析大型强子对撞机(LHC)多次实验产生的数据。然而,这个全球网络并不能满足所有的研究需求。雄心勃勃的研究人员通常希望利用没有集成到全球网络中的计算资源,包括私有集群、商业云和其他生产网格。为了实现这些用例,我们构建了Lobster,这是一个用于在非专用集群上部署数据密集型高吞吐量应用程序的系统。这需要解决与非专用资源相关的多个问题,包括工作分解、软件交付、并发管理、数据访问、数据合并和性能故障排除。通过这些技术,我们演示了Lobster在10k核上有效运行,产生的吞吐量可与LHC基础设施中一些最大的专用集群相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信