Local Blockage Effects for Idealised Turbines in Tidal Channels

Lei Chen, P. A. J. Bonar, C. Vogel, T. Adcock
{"title":"Local Blockage Effects for Idealised Turbines in Tidal Channels","authors":"Lei Chen, P. A. J. Bonar, C. Vogel, T. Adcock","doi":"10.1115/omae2019-95347","DOIUrl":null,"url":null,"abstract":"\n In this paper, idealised analytical and numerical models are used to explore the potential for local blockage effects to enhance the performance of turbines in tidal channels. Arrays of turbines modelled using the volume-flux-constrained actuator disc and blade element momentum theories are embedded within one-dimensional analytical and two-dimensional numerical channel domains. The effects of local blockage on the performance of arrays comprising one and five rows of actuator discs and tidal rotors operating in steady and oscillatory channel flow are then examined. In the case of steady flow, numerical results are found to agree very well with the two-scale actuator disc theory of Nishino & Willden [1]. In the case of oscillatory flow, however, numerical results show that the shorter and more highly blocked arrays produce considerably more power than predicted by the one-dimensional two-scale theory. These results support the findings of Bonar et al. [2], who showed that under certain oscillatory flow conditions, the power produced by a partial-width tidal turbine array can be much greater than predicted by two-scale theory. The departure from theory is most noticeable in the case of five turbine rows, where the two-scale theory predicts that the maximum available power should decrease with increasing local blockage but the numerical model shows the maximum available power to increase. The effects of local blockage are found to be less pronounced for the more realistic tidal rotor than for the highly idealised actuator disc but for both models, the results show that in oscillatory flow, considerably more power is available to the shorter and more highly blocked turbine arrays.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, idealised analytical and numerical models are used to explore the potential for local blockage effects to enhance the performance of turbines in tidal channels. Arrays of turbines modelled using the volume-flux-constrained actuator disc and blade element momentum theories are embedded within one-dimensional analytical and two-dimensional numerical channel domains. The effects of local blockage on the performance of arrays comprising one and five rows of actuator discs and tidal rotors operating in steady and oscillatory channel flow are then examined. In the case of steady flow, numerical results are found to agree very well with the two-scale actuator disc theory of Nishino & Willden [1]. In the case of oscillatory flow, however, numerical results show that the shorter and more highly blocked arrays produce considerably more power than predicted by the one-dimensional two-scale theory. These results support the findings of Bonar et al. [2], who showed that under certain oscillatory flow conditions, the power produced by a partial-width tidal turbine array can be much greater than predicted by two-scale theory. The departure from theory is most noticeable in the case of five turbine rows, where the two-scale theory predicts that the maximum available power should decrease with increasing local blockage but the numerical model shows the maximum available power to increase. The effects of local blockage are found to be less pronounced for the more realistic tidal rotor than for the highly idealised actuator disc but for both models, the results show that in oscillatory flow, considerably more power is available to the shorter and more highly blocked turbine arrays.
潮汐通道中理想水轮机的局部阻塞效应
本文采用理想化的解析模型和数值模型来探讨潮汐通道中局部阻塞效应的可能性,以提高水轮机的性能。涡轮阵列采用体积-通量约束的执行器盘和叶片单元动量理论建模,嵌入一维解析和二维数值通道域。然后研究了局部阻塞对由一排和五排执行器盘组成的阵列和潮汐转子在稳定和振荡通道流动中工作的性能的影响。在定常流动情况下,数值结果与Nishino & Willden[1]的双尺度作动盘理论非常吻合。然而,在振荡流的情况下,数值结果表明,更短和更高度阻塞的阵列产生的功率比一维双尺度理论预测的要大得多。这些结果支持了Bonar等人[2]的发现,他们表明在一定的振荡流动条件下,部分宽度潮汐涡轮机阵列产生的功率可能比双尺度理论预测的要大得多。与理论的背离在五排涡轮的情况下最为明显,其中双尺度理论预测最大可用功率随着局部阻塞的增加而减小,而数值模型显示最大可用功率增加。局部阻塞的影响被发现对更现实的潮汐转子比高度理想的执行器盘不那么明显,但对于两种模型,结果表明,在振荡流中,更短和更高度阻塞的涡轮阵列可获得更大的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信