Volume forms on moduli spaces of d–differentials

Duc-Manh Nguyen
{"title":"Volume forms on moduli spaces of\nd–differentials","authors":"Duc-Manh Nguyen","doi":"10.2140/gt.2022.26.3173","DOIUrl":null,"url":null,"abstract":"Given $d\\in \\mathbb{N}$, $g\\in \\mathbb{N} \\cup\\{0\\}$, and an integral vector $\\kappa=(k_1,\\dots,k_n)$ such that $k_i>-d$ and $k_1+\\dots+k_n=d(2g-2)$, let $\\Omega^d\\mathcal{M}_{g,n}(\\kappa)$ denote the moduli space of meromorphic $d$-differentials on Riemann surfaces of genus $g$ whose zeros and poles have orders prescribed by $\\kappa$. We show that $\\Omega^d\\mathcal{M}_{g,n}(\\kappa)$ carries a volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of $\\mathbb{P}\\Omega^d\\mathcal{M}_{g,n}(\\kappa)=\\Omega^d\\mathcal{M}_{g,n}/\\mathbb{C}^*$ with respect to the measure induced by this volume form is finite.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given $d\in \mathbb{N}$, $g\in \mathbb{N} \cup\{0\}$, and an integral vector $\kappa=(k_1,\dots,k_n)$ such that $k_i>-d$ and $k_1+\dots+k_n=d(2g-2)$, let $\Omega^d\mathcal{M}_{g,n}(\kappa)$ denote the moduli space of meromorphic $d$-differentials on Riemann surfaces of genus $g$ whose zeros and poles have orders prescribed by $\kappa$. We show that $\Omega^d\mathcal{M}_{g,n}(\kappa)$ carries a volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of $\mathbb{P}\Omega^d\mathcal{M}_{g,n}(\kappa)=\Omega^d\mathcal{M}_{g,n}/\mathbb{C}^*$ with respect to the measure induced by this volume form is finite.
微分模空间上的体积形式
给定$d\in \mathbb{N}$, $g\in \mathbb{N} \cup\{0\}$和一个积分向量$\kappa=(k_1,\dots,k_n)$,使得$k_i>-d$和$k_1+\dots+k_n=d(2g-2)$,让$\Omega^d\mathcal{M}_{g,n}(\kappa)$表示亚纯$d$的模空间——属$g$的黎曼曲面上的微分,其零点和极点的阶由$\kappa$规定。我们证明$\Omega^d\mathcal{M}_{g,n}(\kappa)$具有与其仿射复流形结构平行的体积形式,并且$\mathbb{P}\Omega^d\mathcal{M}_{g,n}(\kappa)=\Omega^d\mathcal{M}_{g,n}/\mathbb{C}^*$的总体积相对于由该体积形式引起的测量是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信