K nearest neighbor classifier over secured perturbed data

R. Mynavathi, V. Bhuvaneswari, T. Karthikeyan, C. Kavina
{"title":"K nearest neighbor classifier over secured perturbed data","authors":"R. Mynavathi, V. Bhuvaneswari, T. Karthikeyan, C. Kavina","doi":"10.1109/STARTUP.2016.7583934","DOIUrl":null,"url":null,"abstract":"Privacy Preserving Data Mining has gained very specific area of interest for researchers due to the impact of various security issues. With the voluminous growth of data, threat to individual's private information also grows. Developing useful data mining models without accessing private information has become a major concern. Many studies on data perturbation techniques for protecting sensitive data focus on adding noise to the original data. Manipulating Gaussian noise to the sensitive data has somehow balanced the privacy preservation and the utility of data mining. This paper deals with perturbing sensitive data using Gaussian noise and builds a secure kNN classifier model that provides secured mining. We propose an efficient approach that aims to provide better secured data mining result with minimum information loss.","PeriodicalId":355852,"journal":{"name":"2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STARTUP.2016.7583934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Privacy Preserving Data Mining has gained very specific area of interest for researchers due to the impact of various security issues. With the voluminous growth of data, threat to individual's private information also grows. Developing useful data mining models without accessing private information has become a major concern. Many studies on data perturbation techniques for protecting sensitive data focus on adding noise to the original data. Manipulating Gaussian noise to the sensitive data has somehow balanced the privacy preservation and the utility of data mining. This paper deals with perturbing sensitive data using Gaussian noise and builds a secure kNN classifier model that provides secured mining. We propose an efficient approach that aims to provide better secured data mining result with minimum information loss.
基于安全扰动数据的K近邻分类器
由于各种安全问题的影响,数据挖掘已经获得了研究人员非常感兴趣的领域。随着数据量的增长,对个人隐私信息的威胁也越来越大。在不访问私有信息的情况下开发有用的数据挖掘模型已经成为一个主要问题。许多保护敏感数据的数据摄动技术的研究都集中在对原始数据添加噪声上。利用高斯噪声处理敏感数据在某种程度上平衡了隐私保护和数据挖掘的实用性。本文利用高斯噪声处理敏感数据的扰动,建立了一个安全的kNN分类器模型,提供了安全的挖掘。我们提出了一种有效的方法,旨在以最小的信息丢失提供更安全的数据挖掘结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信