{"title":"The Weak Circular Repetition Threshold Over Large Alphabets","authors":"Lucas Mol, N. Rampersad","doi":"10.1051/ita/2020006","DOIUrl":null,"url":null,"abstract":"The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.