A General Parametrization Framework for Pairwise Markov Models: An Application to Unsupervised Image Segmentation

H. Gangloff, Katherine Morales, Y. Petetin
{"title":"A General Parametrization Framework for Pairwise Markov Models: An Application to Unsupervised Image Segmentation","authors":"H. Gangloff, Katherine Morales, Y. Petetin","doi":"10.1109/mlsp52302.2021.9596395","DOIUrl":null,"url":null,"abstract":"Probabilistic graphical models such as Hidden Markov models have found many applications in signal processing. In this paper, we focus on a particular extension of these models, the Pairwise Markov models. We propose a general parametrization of the probability distributions describing the Pairwise Markov models which enables us to combine them with recent architectures from machine learning such as deep neural networks. In order to evaluate the power of these combined architectures, we focus on the unsupervised image segmentation problem which is particularly challenging and we propose a new parameter estimation algorithm. We show that our models with their associated estimation algorithm outperforms the classical probabilistic models for the task of unsupervised image segmentation.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic graphical models such as Hidden Markov models have found many applications in signal processing. In this paper, we focus on a particular extension of these models, the Pairwise Markov models. We propose a general parametrization of the probability distributions describing the Pairwise Markov models which enables us to combine them with recent architectures from machine learning such as deep neural networks. In order to evaluate the power of these combined architectures, we focus on the unsupervised image segmentation problem which is particularly challenging and we propose a new parameter estimation algorithm. We show that our models with their associated estimation algorithm outperforms the classical probabilistic models for the task of unsupervised image segmentation.
成对马尔可夫模型的通用参数化框架:在无监督图像分割中的应用
概率图模型如隐马尔可夫模型在信号处理中得到了广泛的应用。在本文中,我们关注这些模型的一个特殊扩展,成对马尔可夫模型。我们提出了描述成对马尔可夫模型的概率分布的一般参数化,这使我们能够将它们与机器学习的最新架构(如深度神经网络)结合起来。为了评估这些组合架构的能力,我们重点研究了特别具有挑战性的无监督图像分割问题,并提出了一种新的参数估计算法。我们证明了我们的模型及其相关估计算法在无监督图像分割任务中优于经典概率模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信