Design of gorilla troops optimizer‐tuned 2DOF‐PID controller to improve the frequency response of centralized‐control technical virtual power plant

R. Abishek, Das Dulal Chandra
{"title":"Design of gorilla troops optimizer‐tuned 2DOF‐PID controller to improve the frequency response of centralized‐control technical virtual power plant","authors":"R. Abishek, Das Dulal Chandra","doi":"10.1002/oca.3037","DOIUrl":null,"url":null,"abstract":"This work presents an enhanced frequency control model of a centralized‐control technical virtual power plant (TVPP) with distributed energy resources (DERs). To provide frequency control support, a centralized TVPP is exposed to communication delays because of the numerous message exchanges between the grid operator, the VPP operator, and the DERs. The VPP operator also imposes dead band restrictions on the droop control signal to avoid frequent activation of sensitive DERs. The literature lacks the frequency control models of VPP that can handle these delay and dead‐band issues. This work attempts to incorporate frequency dead‐band and communication delays in the primary (droop control) and secondary control (ACE control) loop for the DERs in the VPP. In addition, a control approach based on 2DOF‐PID controllers tuned by a recently developed artificial gorilla troops optimizer (GTO) is employed to control the frequency of the VPP model. The GTO algorithm performs better on comparative assessment than the other classical optimization algorithms. Under dynamic performance evaluation, the 2DOF‐PID controller outperforms the GTO‐optimized PID and PI controllers. Finally, the sensitivity analysis results show that the proposed GTO‐optimized 2DOF‐PID controller for the VPP model is robust against uncertainties in the system.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an enhanced frequency control model of a centralized‐control technical virtual power plant (TVPP) with distributed energy resources (DERs). To provide frequency control support, a centralized TVPP is exposed to communication delays because of the numerous message exchanges between the grid operator, the VPP operator, and the DERs. The VPP operator also imposes dead band restrictions on the droop control signal to avoid frequent activation of sensitive DERs. The literature lacks the frequency control models of VPP that can handle these delay and dead‐band issues. This work attempts to incorporate frequency dead‐band and communication delays in the primary (droop control) and secondary control (ACE control) loop for the DERs in the VPP. In addition, a control approach based on 2DOF‐PID controllers tuned by a recently developed artificial gorilla troops optimizer (GTO) is employed to control the frequency of the VPP model. The GTO algorithm performs better on comparative assessment than the other classical optimization algorithms. Under dynamic performance evaluation, the 2DOF‐PID controller outperforms the GTO‐optimized PID and PI controllers. Finally, the sensitivity analysis results show that the proposed GTO‐optimized 2DOF‐PID controller for the VPP model is robust against uncertainties in the system.
为改善集中控制技术虚拟电厂的频率响应,设计了大猩猩部队优化器-调谐2DOF - PID控制器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信