Saruladha Krishnamurthy, A. Janardanan, B. Akoramurthy
{"title":"Rough Set Based Ontology Matching","authors":"Saruladha Krishnamurthy, A. Janardanan, B. Akoramurthy","doi":"10.4018/IJRSDA.2018040103","DOIUrl":null,"url":null,"abstract":"Ontologiesenrichestheknowledgeandaddmeaningtothedataresidinginsemanticweb.Ontology matchingidentifiesconceptsformatchinginsourceontologiestothetargetontologiestoeliminate heterogeneities.Despiteusing similaritymeasures for identifying similar concepts, theontology matchingsystemsfailstohandleuncertainty.Thispaperproposesaroughsetbasedontologymatching systemtohandleuncertaintywhichaims(i)tooptimizeconceptsconsideredformatchingbyusing concepttypeclassification(ii)touseroughsetconceptsusingindiscernibilityrelationsandreducts (iii)toapplycriterionofrealism–adecisionmakingunderuncertaintycriteria.Theexperiments conductedintheOAEIbenchmarkdatasets,RSOMsystemyieldedanincreaseof8%inprecision. Thecombinedapproachofusingreductandindiscenibiltyrelationsreducesthenumberofconcepts consideredformatchingamonguncertainentitiestoabout70%incomparisontotheexistingsystems andincreasestheaccuracyofresultsbyusingcriterionofrealism. KeywORDS Criterion of Realism, Ontology Matching, Reduct, Rough Sets, Uncertainty","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
基于粗糙集的本体匹配
Ontologiesenrichestheknowledgeandaddmeaningtothedataresidinginsemanticweb。Ontology matchingidentifiesconceptsformatchinginsourceontologiestothetargetontologiestoeliminate异质性。Despiteusing similaritymeasures用于识别类似的概念,theontology matchingsystemsfailstohandleuncertainty。Thispaperproposesaroughsetbasedontologymatching systemtohandleuncertaintywhichaims(i)tooptimizeconceptsconsideredformatchingbyusing concepttypeclassification(ii)touseroughsetconceptsusingindiscernibilityrelationsandreducts (iii)toapplycriterionofrealism -adecisionmakingunderuncertaintycriteria。Theexperiments conductedintheOAEIbenchmarkdatasets,RSOMsystemyieldedanincreaseof8%inprecision。Thecombinedapproachofusingreductandindiscenibiltyrelationsreducesthenumberofconcepts consideredformatchingamonguncertainentitiestoabout70%incomparisontotheexistingsystems andincreasestheaccuracyofresultsbyusingcriterionofrealism。关键词:真实感标准,本体匹配,约简,粗糙集,不确定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。