Demodulation of Multi-Level Data using Convolutional Neural Network in Holographic Data Storage

Yutaro Katano, Tetsuhiko Muroi, N. Kinoshita, Norihiko Ishii
{"title":"Demodulation of Multi-Level Data using Convolutional Neural Network in Holographic Data Storage","authors":"Yutaro Katano, Tetsuhiko Muroi, N. Kinoshita, Norihiko Ishii","doi":"10.1109/DICTA.2018.8615863","DOIUrl":null,"url":null,"abstract":"We evaluated a deep learning-based data demodulation method for multi-level recording data in holographic data storage. This method demodulates reproduced data as pattern recognition using a convolutional neural network. The network learns the rule of demodulation in consideration of optical noise that deteriorates the quality of reproduced data. Unlike with a conventional hard decision method, the learnt network demodulated the noise-added data accurately and decreased demodulation errors.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We evaluated a deep learning-based data demodulation method for multi-level recording data in holographic data storage. This method demodulates reproduced data as pattern recognition using a convolutional neural network. The network learns the rule of demodulation in consideration of optical noise that deteriorates the quality of reproduced data. Unlike with a conventional hard decision method, the learnt network demodulated the noise-added data accurately and decreased demodulation errors.
全息数据存储中多层数据的卷积神经网络解调
我们评估了一种基于深度学习的数据解调方法,用于全息数据存储中的多级记录数据。该方法利用卷积神经网络将再现数据解调为模式识别。考虑到影响再现数据质量的光噪声,网络学习了解调规则。与传统的硬决策方法不同,学习后的网络能准确地解调加噪数据,减小了解调误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信