Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions

M. O. Adewole
{"title":"Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions","authors":"M. O. Adewole","doi":"10.33993/jnaat482-1175","DOIUrl":null,"url":null,"abstract":"We present the error analysis of class of second order nonlinear hyperbolic interface problem where the spatial and time discretizations are based on finite element method and linearized backward difference scheme respectively. \nBoth semi discrete and fully discrete schemes are analyzed with the assumption that the interface is arbitrary but smooth. \nAlmost optimal convergence rate in \\(H^1(\\Omega)\\)-norm is obtained. \nExamples are given to support the theoretical result.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat482-1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present the error analysis of class of second order nonlinear hyperbolic interface problem where the spatial and time discretizations are based on finite element method and linearized backward difference scheme respectively. Both semi discrete and fully discrete schemes are analyzed with the assumption that the interface is arbitrary but smooth. Almost optimal convergence rate in \(H^1(\Omega)\)-norm is obtained. Examples are given to support the theoretical result.
具有齐次跳跃条件的非线性双曲型方程的近似解
给出了一类空间离散和时间离散分别基于有限元法和线性化后向差分格式的二阶非线性双曲型界面问题的误差分析。在假设界面是任意光滑的情况下,对半离散和全离散两种格式进行了分析。在\(H^1(\Omega)\) -范数下得到了几乎最优的收敛速度。通过实例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信