Approximate approximation on a quantum annealer

I. Sax, Sebastian Feld, Sebastian Zieliński, Thomas Gabor, Claudia Linnhoff-Popien, W. Mauerer
{"title":"Approximate approximation on a quantum annealer","authors":"I. Sax, Sebastian Feld, Sebastian Zieliński, Thomas Gabor, Claudia Linnhoff-Popien, W. Mauerer","doi":"10.1145/3387902.3392635","DOIUrl":null,"url":null,"abstract":"Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3392635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.
量子退火炉的近似近似
工业上的许多问题都是np完全的,并且随着输入尺寸的增加,计算设备的资源会迅速耗尽。量子退火(QA)是利用自然界的量子力学特性来解决这类问题的物理设备。然而,它们在经典机器上与有效的启发式和概率或随机算法竞争,这些算法允许找到大型np完全问题的近似解。虽然QA的第一个实现已经在商业上可用,但它们的实际好处还远远没有得到充分的探索。据我们所知,近似技术还没有得到足够的重视。在本文中,我们探讨了如何为量子退火程序系统地构建不同程度的问题近似版本,以及这如何影响结果质量或在给定量子位集上处理更大问题实例。我们在模拟和真实QA硬件上说明了各种近似技术,并解释了结果,以更好地理解现实世界的能力和当前状态和未来量子计算的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信