An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal Pumps Based on Deep CNNs and Unsupervised Methods

Mahdi Abdollah Chalaki, Daniyal Maroufi, M. Robati, Mohammad Javad Karimi, A. Sadighi
{"title":"An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal Pumps Based on Deep CNNs and Unsupervised Methods","authors":"Mahdi Abdollah Chalaki, Daniyal Maroufi, M. Robati, Mohammad Javad Karimi, A. Sadighi","doi":"10.1109/ICSPIS54653.2021.9729350","DOIUrl":null,"url":null,"abstract":"Despite the recent success in data-driven fault diagnosis of rotating machines, there are still remaining challenges in this field. Among the issues to be addressed, is the lack of information about variety of faults the system may encounter in the field. In this paper, we assume a partial knowledge of the system faults and use the corresponding data to train a convolutional neural network. A combination of t-SNE method and clustering techniques is then employed to detect novel faults. Upon detection, the network is augmented using the new data. Finally, a test setup is used to validate this two-stage methodology on a centrifugal pump and experimental results show high accuracy in detecting novel faults.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the recent success in data-driven fault diagnosis of rotating machines, there are still remaining challenges in this field. Among the issues to be addressed, is the lack of information about variety of faults the system may encounter in the field. In this paper, we assume a partial knowledge of the system faults and use the corresponding data to train a convolutional neural network. A combination of t-SNE method and clustering techniques is then employed to detect novel faults. Upon detection, the network is augmented using the new data. Finally, a test setup is used to validate this two-stage methodology on a centrifugal pump and experimental results show high accuracy in detecting novel faults.
基于深度cnn和无监督方法的离心泵新型故障分类智能检测方法
尽管最近在旋转机械的数据驱动故障诊断方面取得了成功,但该领域仍然存在挑战。需要解决的问题之一是缺乏有关系统在现场可能遇到的各种故障的信息。在本文中,我们假设系统故障的部分知识,并使用相应的数据来训练卷积神经网络。然后结合t-SNE方法和聚类技术来检测新故障。一旦检测到,网络将使用新数据进行扩展。最后,在一台离心泵上对该方法进行了验证,实验结果表明该方法具有较高的故障检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信