{"title":"Learning directed-acyclic-graphs from multiple genomic data sources","authors":"F. Nikolay, M. Pesavento","doi":"10.23919/EUSIPCO.2017.8081535","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.