Chengzhen Duan, Zhiwei Wei, Chi Zhang, Siying Qu, Hongpeng Wang
{"title":"Coarse-grained Density Map Guided Object Detection in Aerial Images","authors":"Chengzhen Duan, Zhiwei Wei, Chi Zhang, Siying Qu, Hongpeng Wang","doi":"10.1109/ICCVW54120.2021.00313","DOIUrl":null,"url":null,"abstract":"Object detection in aerial images is challenging for at least two reasons: (1) most objects are small scale relative to high resolution aerial images; and (2) the object position distribution is nonuniform, making the detection inefficient. In this paper, a novel network, the coarse-grained density map network (CDMNet), is proposed to address these problems. Specifically, we format density maps into coarsegrained form and design a lightweight dual task density estimation network. The coarse-grained density map can not only describe the distribution of objects, but also cluster objects, quantify scale and reduce computing. In addition, we propose a cluster region generation algorithm guided by density maps to crop input images into multiple subregions, denoted clusters, where the objects are adjusted in a reasonable scale. Besides, we improved mosaic data augmentation to relieve foreground-background and category imbalance problems during detector training. Evaluated on two popular aerial datasets, VisDrone[29] and UAVDT[6], CDMNet has achieved significant accuracy improvement compared with previous state-of-the-art methods.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Object detection in aerial images is challenging for at least two reasons: (1) most objects are small scale relative to high resolution aerial images; and (2) the object position distribution is nonuniform, making the detection inefficient. In this paper, a novel network, the coarse-grained density map network (CDMNet), is proposed to address these problems. Specifically, we format density maps into coarsegrained form and design a lightweight dual task density estimation network. The coarse-grained density map can not only describe the distribution of objects, but also cluster objects, quantify scale and reduce computing. In addition, we propose a cluster region generation algorithm guided by density maps to crop input images into multiple subregions, denoted clusters, where the objects are adjusted in a reasonable scale. Besides, we improved mosaic data augmentation to relieve foreground-background and category imbalance problems during detector training. Evaluated on two popular aerial datasets, VisDrone[29] and UAVDT[6], CDMNet has achieved significant accuracy improvement compared with previous state-of-the-art methods.