A. Deslandes, M. Jasieniak, M. Ionescu, J. Shapter, J. Quinton
{"title":"Characterisation of methane plasma treated carbon surfaces","authors":"A. Deslandes, M. Jasieniak, M. Ionescu, J. Shapter, J. Quinton","doi":"10.1109/ICONN.2008.4639236","DOIUrl":null,"url":null,"abstract":"Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was used to investigate the chemical nature of methane plasma treated graphite surfaces. Principle Component Analysis (PCA) was applied to the SIMS data, revealing chemical changes to the surfaces, in particular the extent of hydrogenation. The hydrogen content of the HOPG surface is observed to increase with systematic increases in power of the plasma treatment. These results are supported by Elastic Recoil Detection Analysis (ERDA) measurements that show a similar increase in hydrogen content. Scanning Tunneling Microscopy (STM) measurements provide insight into the morphological changes to the surface caused by the treatment, via investigating plasma-created features that are observed to increase in coverage with the increases in plasma power.","PeriodicalId":192889,"journal":{"name":"2008 International Conference on Nanoscience and Nanotechnology","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONN.2008.4639236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was used to investigate the chemical nature of methane plasma treated graphite surfaces. Principle Component Analysis (PCA) was applied to the SIMS data, revealing chemical changes to the surfaces, in particular the extent of hydrogenation. The hydrogen content of the HOPG surface is observed to increase with systematic increases in power of the plasma treatment. These results are supported by Elastic Recoil Detection Analysis (ERDA) measurements that show a similar increase in hydrogen content. Scanning Tunneling Microscopy (STM) measurements provide insight into the morphological changes to the surface caused by the treatment, via investigating plasma-created features that are observed to increase in coverage with the increases in plasma power.