{"title":"RAL","authors":"Sarah Wassermann, Thibaut Cuvelier, Pedro Casas","doi":"10.1145/3405837.3411390","DOIUrl":null,"url":null,"abstract":"Network-traffic data usually arrives in the form of a data stream. Online monitoring systems need to handle the incoming samples sequentially and quickly. These systems regularly need to get access to ground-truth data to understand the current state of the application they are monitoring, as well as to adapt the monitoring application itself. However, with in-the-wild network-monitoring scenarios, we often face the challenge of limited availability of such data. We introduce RAL, a novel stream-based, active-learning approach, which improves the ground-truth gathering process by dynamically selecting the most beneficial measurements, in particular for model-learning purposes.","PeriodicalId":396272,"journal":{"name":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405837.3411390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Network-traffic data usually arrives in the form of a data stream. Online monitoring systems need to handle the incoming samples sequentially and quickly. These systems regularly need to get access to ground-truth data to understand the current state of the application they are monitoring, as well as to adapt the monitoring application itself. However, with in-the-wild network-monitoring scenarios, we often face the challenge of limited availability of such data. We introduce RAL, a novel stream-based, active-learning approach, which improves the ground-truth gathering process by dynamically selecting the most beneficial measurements, in particular for model-learning purposes.