Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach

M. Caporin, Deniz Erdemlioglu, Stefano Nasini
{"title":"Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach","authors":"M. Caporin, Deniz Erdemlioglu, Stefano Nasini","doi":"10.2139/ssrn.3821566","DOIUrl":null,"url":null,"abstract":"We develop a network-based vector autoregressive approach to uncover the interactions among<br>financial assets by integrating multiple realized measures based on high-frequency data. Under<br>a restricted parameter structure, our approach allows the capture of cross-sectional and time ependencies embedded in a large panel of assets through the decomposition of these two blocks of<br>dependencies. We propose a block coordinate descent (BCD) procedure for the least square estimation and investigate its theoretical properties. By integrating realized returns, realized volume, and realized volatilities of 1095 individual U.S. stocks over fifteen years, we illustrate that our approach identifies a large array of interdependencies with a limited computational effort. As a direct consequence of the estimated model, we provide a new ranking for the systemically important financial institutions (SIFIs) and carry out an impulse-response analysis to quantify the effects of adverse shocks on the financial system.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3821566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop a network-based vector autoregressive approach to uncover the interactions among
financial assets by integrating multiple realized measures based on high-frequency data. Under
a restricted parameter structure, our approach allows the capture of cross-sectional and time ependencies embedded in a large panel of assets through the decomposition of these two blocks of
dependencies. We propose a block coordinate descent (BCD) procedure for the least square estimation and investigate its theoretical properties. By integrating realized returns, realized volume, and realized volatilities of 1095 individual U.S. stocks over fifteen years, we illustrate that our approach identifies a large array of interdependencies with a limited computational effort. As a direct consequence of the estimated model, we provide a new ranking for the systemically important financial institutions (SIFIs) and carry out an impulse-response analysis to quantify the effects of adverse shocks on the financial system.
利用已实现的相互依赖性估计金融网络:一种限制性自回归方法
我们开发了一种基于网络的向量自回归方法,通过整合基于高频数据的多个已实现度量来揭示金融资产之间的相互作用。在有限的参数结构下,我们的方法允许通过分解这两个依赖块来捕获嵌入在大型资产面板中的横截面和时间依赖关系。提出了一种块坐标下降法(BCD)进行最小二乘估计,并研究了其理论性质。通过整合15年来1095只美国个股的已实现收益、已实现成交量和已实现波动率,我们说明,我们的方法以有限的计算努力识别了大量的相互依赖关系。作为估计模型的直接结果,我们为系统重要性金融机构(sifi)提供了一个新的排名,并进行了脉冲响应分析,以量化不利冲击对金融体系的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信