Supporting Exploration of Eye Tracking Data: Identifying Changing Behaviour Over Long Durations

P. Muthumanickam, C. Forsell, K. Vrotsou, J. Johansson, M. Cooper
{"title":"Supporting Exploration of Eye Tracking Data: Identifying Changing Behaviour Over Long Durations","authors":"P. Muthumanickam, C. Forsell, K. Vrotsou, J. Johansson, M. Cooper","doi":"10.1145/2993901.2993905","DOIUrl":null,"url":null,"abstract":"Visual analytics of eye tracking data is a common tool for evaluation studies across diverse fields. In this position paper we propose a novel user-driven interactive data exploration tool for understanding the characteristics of eye gaze movements and the changes in these behaviours over time. Eye tracking experiments generate multidimensional scan path data with sequential information. Many mathematical methods in the past have analysed one or a few of the attributes of the scan path data and derived attributes such as Area of Interest (AoI), statistical measures, geometry, domain specific features etc. In our work we are interested in visual analytics of one of the derived attributes of sequential data-the: AoI and the sequences of visits to these AoIs over time. In the case of static stimuli, such as images, or dynamic stimuli, like videos, having predefined or fixed AoIs is not an efficient way of analysing scan path patterns. The AoI of a user over a stimulus may evolve over time and hence determining the AoIs dynamically through temporal clustering could be a better method for analysing the eye gaze patterns. In this work we primarily focus on the challenges in analysis and visualization of the temporal evolution of AoIs. This paper discusses the existing methods, their shortcomings and scope for improvement by adopting visual analytics methods for event-based temporal data to the analysis of eye tracking data.","PeriodicalId":235801,"journal":{"name":"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993901.2993905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Visual analytics of eye tracking data is a common tool for evaluation studies across diverse fields. In this position paper we propose a novel user-driven interactive data exploration tool for understanding the characteristics of eye gaze movements and the changes in these behaviours over time. Eye tracking experiments generate multidimensional scan path data with sequential information. Many mathematical methods in the past have analysed one or a few of the attributes of the scan path data and derived attributes such as Area of Interest (AoI), statistical measures, geometry, domain specific features etc. In our work we are interested in visual analytics of one of the derived attributes of sequential data-the: AoI and the sequences of visits to these AoIs over time. In the case of static stimuli, such as images, or dynamic stimuli, like videos, having predefined or fixed AoIs is not an efficient way of analysing scan path patterns. The AoI of a user over a stimulus may evolve over time and hence determining the AoIs dynamically through temporal clustering could be a better method for analysing the eye gaze patterns. In this work we primarily focus on the challenges in analysis and visualization of the temporal evolution of AoIs. This paper discusses the existing methods, their shortcomings and scope for improvement by adopting visual analytics methods for event-based temporal data to the analysis of eye tracking data.
支持眼动追踪数据的探索:识别长时间内不断变化的行为
眼动追踪数据的可视化分析是跨多个领域评估研究的常用工具。在这篇论文中,我们提出了一种新的用户驱动的交互式数据探索工具,用于理解眼球注视运动的特征以及这些行为随时间的变化。眼动追踪实验生成具有顺序信息的多维扫描路径数据。过去的许多数学方法分析了扫描路径数据的一个或几个属性,并推导出感兴趣区域(AoI)、统计度量、几何形状、领域特定特征等属性。在我们的工作中,我们感兴趣的是对顺序数据(AoI)的派生属性之一的可视化分析,以及随着时间的推移对这些AoI的访问顺序。在静态刺激(如图像)或动态刺激(如视频)的情况下,预定义或固定的aoi并不是分析扫描路径模式的有效方法。用户对刺激的AoI可能会随着时间的推移而变化,因此通过时间聚类动态确定AoI可能是分析眼睛注视模式的更好方法。在这项工作中,我们主要关注aoi的时间演变分析和可视化方面的挑战。本文将基于事件时态数据的可视化分析方法应用于眼动追踪数据的分析,讨论了现有的方法、存在的不足和需要改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信