Artificial Intelligence Designer of Materials and Processes for Advanced Power Generation

Vyacheslav Romanov
{"title":"Artificial Intelligence Designer of Materials and Processes for Advanced Power Generation","authors":"Vyacheslav Romanov","doi":"10.1109/cai54212.2023.00084","DOIUrl":null,"url":null,"abstract":"Motivation for this research is the need to accelerate design of high-performance materials and processes to be used in advanced fossil energy power plants and, by doing so, bridge the gap between the shortening technological cycles and the long qualification testing of new alloys for energy applications. The artificial intelligence can exploit causal graph neural networks and other advanced network architectures to represent domain knowledge and engineering constraints. In this presentation, ‘deep-freeze’ graphs, ‘convoluted filtering’ networks, ‘mirror-image’ graphs, and adversarial ensemble methods are utilized to support inversion modeling for optimization of the complex compositions and complex processes in design of high-performing alloys, with their properties tailored to the energy application specifications.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation for this research is the need to accelerate design of high-performance materials and processes to be used in advanced fossil energy power plants and, by doing so, bridge the gap between the shortening technological cycles and the long qualification testing of new alloys for energy applications. The artificial intelligence can exploit causal graph neural networks and other advanced network architectures to represent domain knowledge and engineering constraints. In this presentation, ‘deep-freeze’ graphs, ‘convoluted filtering’ networks, ‘mirror-image’ graphs, and adversarial ensemble methods are utilized to support inversion modeling for optimization of the complex compositions and complex processes in design of high-performing alloys, with their properties tailored to the energy application specifications.
先进发电材料与工艺人工智能设计师
这项研究的动机是需要加速用于先进化石能源发电厂的高性能材料和工艺的设计,并通过这样做,弥合缩短技术周期和能源应用新合金的长期合格测试之间的差距。人工智能可以利用因果图神经网络和其他先进的网络体系结构来表示领域知识和工程约束。在本次演讲中,“深度冻结”图、“卷积过滤”网络、“镜像”图和对抗集成方法被用于支持反演建模,以优化高性能合金设计中的复杂成分和复杂过程,并根据能源应用规范定制其特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信