Annotating, Understanding, and Predicting Long-term Video Memorability

Romain Cohendet, Karthik Yadati, Ngoc Q. K. Duong, C. Demarty
{"title":"Annotating, Understanding, and Predicting Long-term Video Memorability","authors":"Romain Cohendet, Karthik Yadati, Ngoc Q. K. Duong, C. Demarty","doi":"10.1145/3206025.3206056","DOIUrl":null,"url":null,"abstract":"Memorability can be regarded as a useful metric of video importance to help make a choice between competing videos. Research on computational understanding of video memorability is however in its early stages. There is no available dataset for modelling purposes, and the few previous attempts provided protocols to collect video memorability data that would be difficult to generalize. Furthermore, the computational features needed to build a robust memorability predictor remain largely undiscovered. In this article, we propose a new protocol to collect long-term video memorability annotations. We measure the memory performances of 104 participants from weeks to years after memorization to build a dataset of 660 videos for video memorability prediction. This dataset is made available for the research community. We then analyze the collected data in order to better understand video memorability, in particular the effects of response time, duration of memory retention and repetition of visualization on video memorability. We finally investigate the use of various types of audio and visual features and build a computational model for video memorability prediction. We conclude that high level visual semantics help better predict the memorability of videos.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Memorability can be regarded as a useful metric of video importance to help make a choice between competing videos. Research on computational understanding of video memorability is however in its early stages. There is no available dataset for modelling purposes, and the few previous attempts provided protocols to collect video memorability data that would be difficult to generalize. Furthermore, the computational features needed to build a robust memorability predictor remain largely undiscovered. In this article, we propose a new protocol to collect long-term video memorability annotations. We measure the memory performances of 104 participants from weeks to years after memorization to build a dataset of 660 videos for video memorability prediction. This dataset is made available for the research community. We then analyze the collected data in order to better understand video memorability, in particular the effects of response time, duration of memory retention and repetition of visualization on video memorability. We finally investigate the use of various types of audio and visual features and build a computational model for video memorability prediction. We conclude that high level visual semantics help better predict the memorability of videos.
注释、理解和预测长期视频记忆
可记忆性可以被视为衡量视频重要性的有用指标,有助于在竞争性视频之间做出选择。然而,视频记忆的计算理解研究还处于初级阶段。没有可用的数据集用于建模目的,并且之前的几次尝试提供了收集视频记忆性数据的协议,这些数据很难概括。此外,构建稳健的记忆预测器所需的计算特征在很大程度上仍未被发现。在本文中,我们提出了一种新的协议来收集长期视频记忆注释。我们测量了104名参与者在记忆几周到几年后的记忆表现,建立了一个包含660个视频的数据集,用于视频记忆预测。该数据集可供研究界使用。然后,为了更好地理解视频记忆性,我们分析了收集到的数据,特别是反应时间、记忆保持时间和可视化重复对视频记忆性的影响。最后,我们研究了各种类型的音频和视觉特征的使用,并建立了视频记忆预测的计算模型。我们得出结论,高水平的视觉语义有助于更好地预测视频的可记忆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信