State Detection of Rotary Actuators Using Wavelet Transform and Neural Networks

S. Vujnovic, Ž. Đurović, A. Marjanović, Ž. Zečević, M. Micev
{"title":"State Detection of Rotary Actuators Using Wavelet Transform and Neural Networks","authors":"S. Vujnovic, Ž. Đurović, A. Marjanović, Ž. Zečević, M. Micev","doi":"10.1109/IT48810.2020.9070503","DOIUrl":null,"url":null,"abstract":"Rotary actuators are among the most commonly used machines in the industry and the algorithm for detecting the level of wear they are subjected to can prevent significant amount of unnecessary maintenance expenses. This paper proposes a new algorithm which can detect the state of the rotating machine using acoustic signals recorded in its vicinity. The algorithm uses a combination of wavelet transform and neural networks and is computationally inexpensive, so it can be implemented on a simple microcontroller. The testing has been done on real acoustic signals recorded in thermal power plant Kostolac in Serbia.","PeriodicalId":220339,"journal":{"name":"2020 24th International Conference on Information Technology (IT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference on Information Technology (IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IT48810.2020.9070503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rotary actuators are among the most commonly used machines in the industry and the algorithm for detecting the level of wear they are subjected to can prevent significant amount of unnecessary maintenance expenses. This paper proposes a new algorithm which can detect the state of the rotating machine using acoustic signals recorded in its vicinity. The algorithm uses a combination of wavelet transform and neural networks and is computationally inexpensive, so it can be implemented on a simple microcontroller. The testing has been done on real acoustic signals recorded in thermal power plant Kostolac in Serbia.
基于小波变换和神经网络的旋转执行器状态检测
旋转执行器是工业中最常用的机器之一,用于检测它们所受磨损程度的算法可以防止大量不必要的维护费用。本文提出了一种利用周围记录的声信号检测旋转机器状态的新算法。该算法结合了小波变换和神经网络,计算成本低,因此可以在简单的微控制器上实现。对塞尔维亚科斯托拉茨热电厂记录的真实声信号进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信