Battery Thermal-conscious Energy Management for Hybrid Electric Bus Based on Fully-continuous Control with Deep Reinforcement Learning

Zhongbao Wei, Haokai Ruan, Hongwen He
{"title":"Battery Thermal-conscious Energy Management for Hybrid Electric Bus Based on Fully-continuous Control with Deep Reinforcement Learning","authors":"Zhongbao Wei, Haokai Ruan, Hongwen He","doi":"10.1109/ITEC51675.2021.9490073","DOIUrl":null,"url":null,"abstract":"This paper proposes a knowledge-based, thermal-conscious strategy for the energy management of hybrid electric bus (HEB). The deep deterministic policy gradient (DDPG) algorithm with priority experience replay (PER) is exploited to distribute the power smartly among energy components. The fully-continuous separate speed- and torque-control mechanism is further devised to excavate the upper optimization potential of PER-DDPG strategy. Moreover, in the PER-DDPG framework, the penalties to over-temperature are embedded for thermal safety enforcement. Comparative results also disclose the superiority of the proposed strategy in terms of the over-temperature protection and overall optimization performance in the energy management of HEB.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a knowledge-based, thermal-conscious strategy for the energy management of hybrid electric bus (HEB). The deep deterministic policy gradient (DDPG) algorithm with priority experience replay (PER) is exploited to distribute the power smartly among energy components. The fully-continuous separate speed- and torque-control mechanism is further devised to excavate the upper optimization potential of PER-DDPG strategy. Moreover, in the PER-DDPG framework, the penalties to over-temperature are embedded for thermal safety enforcement. Comparative results also disclose the superiority of the proposed strategy in terms of the over-temperature protection and overall optimization performance in the energy management of HEB.
基于深度强化学习的全连续控制混合动力客车电池热意识能量管理
提出了一种基于知识、热意识的混合动力客车能量管理策略。利用具有优先级经验重放(PER)的深度确定性策略梯度(DDPG)算法,实现了电力在各能量分量之间的智能分配。进一步设计了全连续分离转速和转矩控制机构,挖掘了PER-DDPG策略的上部优化潜力。此外,在PER-DDPG框架中,对温度过高的处罚被嵌入到热安全执行中。对比结果也揭示了该策略在HEB能源管理中的超温保护和整体优化性能方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信