Machine Learning in Software Defined Network

Jiamei Liu, Qiaozhi Xu
{"title":"Machine Learning in Software Defined Network","authors":"Jiamei Liu, Qiaozhi Xu","doi":"10.1109/ITNEC.2019.8729331","DOIUrl":null,"url":null,"abstract":"As a new network architecture, software defined network (SDN) separates the control plane from the forwarding plane which enables administrators to define and control the network through the method of software programming, provides a new research direction for the next generation of network architecture. At the same time, the machine learning technology has been developed rapidly in recent years and some studies have begun to introduce machine learning methods into SDN to improve the efficiency of network management and conformity, or to solve problems that cannot be solved easily by traditional methods. The paper analyses, summarizes and introduces these researches which used the supervised learning, unsupervised learning or semi-supervised learning methods to solve some specific problems on SDN, and it will help later researchers understand the filed more quickly and promote the development of the machine learning technology in SDN.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As a new network architecture, software defined network (SDN) separates the control plane from the forwarding plane which enables administrators to define and control the network through the method of software programming, provides a new research direction for the next generation of network architecture. At the same time, the machine learning technology has been developed rapidly in recent years and some studies have begun to introduce machine learning methods into SDN to improve the efficiency of network management and conformity, or to solve problems that cannot be solved easily by traditional methods. The paper analyses, summarizes and introduces these researches which used the supervised learning, unsupervised learning or semi-supervised learning methods to solve some specific problems on SDN, and it will help later researchers understand the filed more quickly and promote the development of the machine learning technology in SDN.
软件定义网络中的机器学习
软件定义网络(SDN)作为一种新的网络架构,将控制平面与转发平面分离开来,使管理员能够通过软件编程的方式对网络进行定义和控制,为下一代网络架构提供了新的研究方向。同时,近年来机器学习技术发展迅速,一些研究开始将机器学习方法引入SDN,以提高网络管理和整合的效率,或者解决传统方法难以解决的问题。本文对这些利用监督学习、无监督学习或半监督学习方法解决SDN上一些具体问题的研究进行了分析、总结和介绍,有助于后期研究者更快地了解该领域,促进SDN机器学习技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信