V. Bhagavatula, D. Kwon, Jaehun Lee, Q. Bui, Jeong-Hyun Choi, Siuchuang-Ivan Lu, S. Son
{"title":"13.3 A SAW-less reconfigurable multimode transmitter with a voltage-mode harmonic-reject mixer in 14nm FinFET CMOS","authors":"V. Bhagavatula, D. Kwon, Jaehun Lee, Q. Bui, Jeong-Hyun Choi, Siuchuang-Ivan Lu, S. Son","doi":"10.1109/ISSCC.2017.7870340","DOIUrl":null,"url":null,"abstract":"Multimode cellular RFICs need high dynamic range in order to simultaneously satisfy the high linearity requirements of LTE and the low-noise performance of 2G. Traditionally, SAW filters are employed to relax the noise-linearity trade-off at the cost of higher BOM. In a highly competitive market, mobile devices need to support >35 LTE bands, a number which is expected to rise further in the future, providing a strong motivation for SAW-less transmitter (TX) design. An LTE TX operating in the single resource-block (RB) mode is susceptible to spurious out-of-band (OOB) emission due to the high power spectral density concentrated in narrow bandwidths at frequency offsets as large as 4.5MHz (LTE10) or 9MHz (LTE20) from the carrier [1]. The most challenging condition is for B13 where the 3rd-order counter intermodulation (CIM3) product falls in an adjacent public-safety band. With 23dBm at the antenna, a B13-TX must ensure OOB emission less than −57dBm/6.25kHz in the public safety band.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Multimode cellular RFICs need high dynamic range in order to simultaneously satisfy the high linearity requirements of LTE and the low-noise performance of 2G. Traditionally, SAW filters are employed to relax the noise-linearity trade-off at the cost of higher BOM. In a highly competitive market, mobile devices need to support >35 LTE bands, a number which is expected to rise further in the future, providing a strong motivation for SAW-less transmitter (TX) design. An LTE TX operating in the single resource-block (RB) mode is susceptible to spurious out-of-band (OOB) emission due to the high power spectral density concentrated in narrow bandwidths at frequency offsets as large as 4.5MHz (LTE10) or 9MHz (LTE20) from the carrier [1]. The most challenging condition is for B13 where the 3rd-order counter intermodulation (CIM3) product falls in an adjacent public-safety band. With 23dBm at the antenna, a B13-TX must ensure OOB emission less than −57dBm/6.25kHz in the public safety band.