An Enhanced Domination Based Evolutionary Algorithm for Multi-objective Problems

Lei Fan, Xiyang Liu
{"title":"An Enhanced Domination Based Evolutionary Algorithm for Multi-objective Problems","authors":"Lei Fan, Xiyang Liu","doi":"10.1109/CIS.2013.27","DOIUrl":null,"url":null,"abstract":"We proposed a new evolutionary algorithm for multiobjective optimization problems. The influence of constraints on search space and Pareto front are analyzed first. According to the analysis, a new clustering method based on domination is proposed, in which the infeasible solutions are employed. Then, aiming to converge to Pareto fronts of the multiobjective problems quickly, a differential evolution based crossover operator is designed. In the designed crossover operator, uniform design method was used. At last, a square search method is employed to update the feasible nondominated solutions to improve the precision. Experiments on 10 selected test problems and comparisons with NSGA-II are made. Simulation results indicate that our proposal is effective and sound, and our proposal outperforms NSGA-II on the selected test problems.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We proposed a new evolutionary algorithm for multiobjective optimization problems. The influence of constraints on search space and Pareto front are analyzed first. According to the analysis, a new clustering method based on domination is proposed, in which the infeasible solutions are employed. Then, aiming to converge to Pareto fronts of the multiobjective problems quickly, a differential evolution based crossover operator is designed. In the designed crossover operator, uniform design method was used. At last, a square search method is employed to update the feasible nondominated solutions to improve the precision. Experiments on 10 selected test problems and comparisons with NSGA-II are made. Simulation results indicate that our proposal is effective and sound, and our proposal outperforms NSGA-II on the selected test problems.
一种改进的基于控制的多目标问题进化算法
针对多目标优化问题,提出了一种新的进化算法。首先分析了约束条件对搜索空间和帕累托前沿的影响。在此基础上,提出了一种新的基于控制的聚类方法,该方法采用不可行解。然后,为了使多目标问题快速收敛到Pareto前沿,设计了一种基于差分进化的交叉算子。设计的交叉算子采用均匀设计方法。最后,采用平方搜索法对可行非支配解进行更新,提高求解精度。选取10个测试问题进行了实验,并与NSGA-II进行了比较。仿真结果表明,我们的方案是有效和合理的,我们的方案在选定的测试问题上优于NSGA-II。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信