A noise-robust ASR front-end using Wiener filter constructed from MMSE estimation of clean speech and noise

Jian Wu, J. Droppo, L. Deng, A. Acero
{"title":"A noise-robust ASR front-end using Wiener filter constructed from MMSE estimation of clean speech and noise","authors":"Jian Wu, J. Droppo, L. Deng, A. Acero","doi":"10.1109/ASRU.2003.1318461","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel two-stage framework for designing a noise-robust front-end for automatic speech recognition. In the first stage, a parametric model of acoustic distortion is used to estimate the clean speech and noise spectra in a principled way so that no heuristic parameters need to be set manually. To reduce possible flaws caused by the simplifying assumptions in the parametric model, a second-stage Wiener filtering is applied to further reduce the noise while preserving speech spectra unharmed. This front-end is evaluated on the Aurora2 task. For the multi-condition training scenario, a relative error reduction of 28.4% is achieved.","PeriodicalId":394174,"journal":{"name":"2003 IEEE Workshop on Automatic Speech Recognition and Understanding (IEEE Cat. No.03EX721)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Workshop on Automatic Speech Recognition and Understanding (IEEE Cat. No.03EX721)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2003.1318461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we present a novel two-stage framework for designing a noise-robust front-end for automatic speech recognition. In the first stage, a parametric model of acoustic distortion is used to estimate the clean speech and noise spectra in a principled way so that no heuristic parameters need to be set manually. To reduce possible flaws caused by the simplifying assumptions in the parametric model, a second-stage Wiener filtering is applied to further reduce the noise while preserving speech spectra unharmed. This front-end is evaluated on the Aurora2 task. For the multi-condition training scenario, a relative error reduction of 28.4% is achieved.
基于噪声和干净语音的MMSE估计构建了一种基于维纳滤波器的抗噪ASR前端
在本文中,我们提出了一种新的两阶段框架来设计自动语音识别的噪声鲁棒前端。在第一阶段,采用参数化的声失真模型,有原则地估计干净的语音和噪声频谱,从而不需要手动设置启发式参数。为了减少参数模型中简化假设可能造成的缺陷,在保持语音频谱不受损害的情况下,应用第二阶段维纳滤波进一步降低噪声。该前端在Aurora2任务上进行评估。对于多条件训练场景,实现了28.4%的相对误差降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信