Band Structure Theory for Extended Systems

J. Autschbach
{"title":"Band Structure Theory for Extended Systems","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0013","DOIUrl":null,"url":null,"abstract":"The electronic structure of infinite periodic systems (crystals) is treated with band structure theory, replacing molecular orbitals by crystal orbitals. The chapter starts out by introducing the electron gas and definitions of the Fermi momentum, the Fermi energy, and the density of states (DOS). A periodic linear combination of atomic orbitals (LCAO) type treatment of an infinite periodic system is facilitated by the construction of Bloch functions. The notions of energy band and band gap are discussed with band structure concepts, using the approximations made in Huckel theory (chapter 12). One, two, and three-dimensional crystal lattices and the associated reciprocal lattices are introduced. The band structures of sodium metal, boron nitride, silicon, and graphite, are discussed as examples of metals, insulators, semi-conductors, and semi-metals, respectively. The chapter concludes with a brief discussion of the projected DOS and measures to determine bonding or antibonding interactions between atoms in a crystal.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic structure of infinite periodic systems (crystals) is treated with band structure theory, replacing molecular orbitals by crystal orbitals. The chapter starts out by introducing the electron gas and definitions of the Fermi momentum, the Fermi energy, and the density of states (DOS). A periodic linear combination of atomic orbitals (LCAO) type treatment of an infinite periodic system is facilitated by the construction of Bloch functions. The notions of energy band and band gap are discussed with band structure concepts, using the approximations made in Huckel theory (chapter 12). One, two, and three-dimensional crystal lattices and the associated reciprocal lattices are introduced. The band structures of sodium metal, boron nitride, silicon, and graphite, are discussed as examples of metals, insulators, semi-conductors, and semi-metals, respectively. The chapter concludes with a brief discussion of the projected DOS and measures to determine bonding or antibonding interactions between atoms in a crystal.
扩展系统的能带结构理论
用能带结构理论研究无限周期系统(晶体)的电子结构,用晶体轨道代替分子轨道。本章首先介绍电子气体以及费米动量、费米能量和态密度(DOS)的定义。通过布洛赫函数的构造,促进了无限周期系统的周期线性原子轨道组合(LCAO)型处理。利用Huckel理论(第12章)中所作的近似,用能带结构概念讨论能带和带隙的概念。介绍了一维、二维和三维晶格及其相关的倒易晶格。金属钠、氮化硼、硅和石墨的能带结构分别作为金属、绝缘体、半导体和半金属的例子进行了讨论。本章最后简要讨论了投影DOS和测定晶体中原子间成键或反键相互作用的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信