Nonlinear optimal stochastic regulator using finite-horizon state dependent riccati equation

Ahmed Khamis, D. Naidu
{"title":"Nonlinear optimal stochastic regulator using finite-horizon state dependent riccati equation","authors":"Ahmed Khamis, D. Naidu","doi":"10.1109/CYBER.2014.6917440","DOIUrl":null,"url":null,"abstract":"A number of computational techniques have been offered for estimation of unmeasured states in nonlinear systems. Most of these techniques rely on applying the linear estimation techniques to the linearized systems, which can be effective only in the neighborhood of the operating point. This paper presents a new efficient approximate online technique used for finite-horizon nonlinear stochastic regulator problems. This technique based on change of variables that converts the differential Riccati equation to a linear Lyapunov differential equation. Illustrative examples are given to illustrate the effectiveness of the proposed technique.","PeriodicalId":183401,"journal":{"name":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2014.6917440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A number of computational techniques have been offered for estimation of unmeasured states in nonlinear systems. Most of these techniques rely on applying the linear estimation techniques to the linearized systems, which can be effective only in the neighborhood of the operating point. This paper presents a new efficient approximate online technique used for finite-horizon nonlinear stochastic regulator problems. This technique based on change of variables that converts the differential Riccati equation to a linear Lyapunov differential equation. Illustrative examples are given to illustrate the effectiveness of the proposed technique.
基于有限视界状态依赖riccati方程的非线性最优随机调节器
对于非线性系统中未测量状态的估计,已经提出了许多计算技术。这些技术大多依赖于将线性估计技术应用于线性化系统,这种估计技术只能在工作点的邻域中有效。本文提出了一种新的有效的近似在线方法,用于求解有限水平非线性随机调节器问题。这种技术基于变量变换,将微分里卡蒂方程转换为线性李雅普诺夫微分方程。举例说明了所提技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信