Memristor crossbar based unsupervised training

Raqibul Hasan, T. Taha
{"title":"Memristor crossbar based unsupervised training","authors":"Raqibul Hasan, T. Taha","doi":"10.1109/NAECON.2015.7443091","DOIUrl":null,"url":null,"abstract":"Several big data applications are particularly focused on classification and clustering tasks. Robustness of such system depends on how well it can extract important features from the raw data. For big data processing we are interested for a generic feature extraction mechanism for different applications. Autoencoder is a popular unsupervised training algorithm for dimensionality reduction and feature extraction. In this work we have examined memristor crossbar based implementation of autoencoder which will consume very low power. We have designed on-chip training circuitry for the unsupervised training scheme.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Several big data applications are particularly focused on classification and clustering tasks. Robustness of such system depends on how well it can extract important features from the raw data. For big data processing we are interested for a generic feature extraction mechanism for different applications. Autoencoder is a popular unsupervised training algorithm for dimensionality reduction and feature extraction. In this work we have examined memristor crossbar based implementation of autoencoder which will consume very low power. We have designed on-chip training circuitry for the unsupervised training scheme.
基于忆阻交叉棒的无监督训练
一些大数据应用程序特别关注分类和聚类任务。这种系统的鲁棒性取决于它从原始数据中提取重要特征的能力。对于大数据处理,我们感兴趣的是针对不同应用的通用特征提取机制。自编码器是一种流行的无监督训练算法,用于降维和特征提取。在这项工作中,我们研究了基于忆阻交叉棒的自动编码器的实现,它将消耗非常低的功率。我们为无监督训练方案设计了片上训练电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信