Real-Time Possessing Relationship Detection for Sports Analytics

Yinda Xu, Yong-gang Peng
{"title":"Real-Time Possessing Relationship Detection for Sports Analytics","authors":"Yinda Xu, Yong-gang Peng","doi":"10.23919/CCC50068.2020.9189516","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel algorithm for relationship detection. This task involves the tracking of a target object and human pose. The target object is tracked with a visual object tracker. The human poses are estimated via a keypoint detector while the person identities are preserved with a simple yet effective IoU tracker. Finally, a possessing relationship inference is made based on the position information of the tracked target and humans. This algorithm meets the real-time requirement by running at over 20 FPS and we give an application illustration in sports analytics.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a novel algorithm for relationship detection. This task involves the tracking of a target object and human pose. The target object is tracked with a visual object tracker. The human poses are estimated via a keypoint detector while the person identities are preserved with a simple yet effective IoU tracker. Finally, a possessing relationship inference is made based on the position information of the tracked target and humans. This algorithm meets the real-time requirement by running at over 20 FPS and we give an application illustration in sports analytics.
体育分析的实时占有关系检测
本文提出了一种新的关系检测算法。这项任务包括跟踪目标物体和人体姿势。目标对象用可视对象跟踪器跟踪。通过关键点检测器估计人体姿势,同时使用简单而有效的IoU跟踪器保存人的身份。最后,根据被跟踪目标与人的位置信息进行占有关系推理。该算法以每秒20帧以上的速度满足实时性要求,并给出了在体育分析中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信