A Hierarchical Matrix Factorization Approach for Location-Based Web Service QoS Prediction

Pinjia He, Jieming Zhu, Jianlong Xu, Michael R. Lyu
{"title":"A Hierarchical Matrix Factorization Approach for Location-Based Web Service QoS Prediction","authors":"Pinjia He, Jieming Zhu, Jianlong Xu, Michael R. Lyu","doi":"10.1109/SOSE.2014.41","DOIUrl":null,"url":null,"abstract":"With the rapid growth of population of service-oriented architecture (SOA), services are playing an important role in software development process. One major issue we should consider about Web services is to dig out the one with the best QoS value among all functionally-equivalent candidates. However, since there are a great number of missing QoS values in real world invocation records, we can hardly do a detailed comparison among those selectable Web services. To address this problem, we propose a location-based hierarchical matrix factorization method to make efficient and accurate QoS prediction. In our method, we consider both global context and local information. We first apply matrix factorization (MF) on global user-service records and obtain a global prediction matrix. After that, we use MF to predict QoS values on some user-service groups, which are clustered by K-means algorithm. Then we combine global and local predicted QoS values to provide our final prediction. Extensive experiments show the effectiveness of our hierarchical approach which outperforms other popular methods.","PeriodicalId":360538,"journal":{"name":"2014 IEEE 8th International Symposium on Service Oriented System Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Symposium on Service Oriented System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2014.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

With the rapid growth of population of service-oriented architecture (SOA), services are playing an important role in software development process. One major issue we should consider about Web services is to dig out the one with the best QoS value among all functionally-equivalent candidates. However, since there are a great number of missing QoS values in real world invocation records, we can hardly do a detailed comparison among those selectable Web services. To address this problem, we propose a location-based hierarchical matrix factorization method to make efficient and accurate QoS prediction. In our method, we consider both global context and local information. We first apply matrix factorization (MF) on global user-service records and obtain a global prediction matrix. After that, we use MF to predict QoS values on some user-service groups, which are clustered by K-means algorithm. Then we combine global and local predicted QoS values to provide our final prediction. Extensive experiments show the effectiveness of our hierarchical approach which outperforms other popular methods.
基于位置的Web服务QoS预测的层次矩阵分解方法
随着面向服务的体系结构(SOA)的快速发展,服务在软件开发过程中扮演着越来越重要的角色。关于Web服务,我们应该考虑的一个主要问题是在所有功能等效的候选服务中找出具有最佳QoS值的服务。然而,由于在真实世界的调用记录中有大量缺失的QoS值,我们很难对这些可选择的Web服务进行详细的比较。为了解决这一问题,我们提出了一种基于位置的层次矩阵分解方法来进行高效、准确的QoS预测。在我们的方法中,我们同时考虑了全局上下文和局部信息。首先对全局用户服务记录进行矩阵分解,得到全局预测矩阵。在此基础上,通过K-means算法对用户服务组进行聚类,利用MF预测用户服务组的QoS值。然后我们结合全局和局部预测的QoS值来提供我们的最终预测。大量的实验表明,我们的分层方法的有效性优于其他流行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信