Spaceprint: a Mobility-based Fingerprinting Scheme for Spaces

Mitra Baratchi, G. Heijenk, Maarten van Steen
{"title":"Spaceprint: a Mobility-based Fingerprinting Scheme for Spaces","authors":"Mitra Baratchi, G. Heijenk, Maarten van Steen","doi":"10.1145/3139958.3140009","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of how automated situational awareness in a specific location can be achieved by characterizing the fingerprint of recurrent situations from ubiquitously generated mobility data. Without semantic input about the time and space (location) where situations take place, this turns out to be a fundamental challenging problem. Uncertainties in data also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the actual identity of a space can be discovered from the extracted situation patterns.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we address the problem of how automated situational awareness in a specific location can be achieved by characterizing the fingerprint of recurrent situations from ubiquitously generated mobility data. Without semantic input about the time and space (location) where situations take place, this turns out to be a fundamental challenging problem. Uncertainties in data also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the actual identity of a space can be discovered from the extracted situation patterns.
Spaceprint:基于移动性的空间指纹识别方案
在本文中,我们解决了如何通过从无处不在的移动数据中描述周期性情况的指纹来实现特定位置的自动态势感知的问题。如果没有关于情况发生的时间和空间(位置)的语义输入,这将成为一个根本性的挑战问题。当数据以不规则的时间间隔生成,混杂着噪声和错误时,数据中的不确定性也会带来技术挑战。在本文中,我们提出了Spaceprint,这是一种完全自动化的算法,用于发现空间中类似情况的重复模式。我们通过展示如何从提取的情况模式中发现描述空间实际身份的潜在变量来评估这种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信